Abstract
AbstractThe effects of temperature, tube length, defects and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.
References
48
Referenced
42
-
A. M. Marconnet, M. A. Panzer & K. E. Goodson . Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 85, 1295 (2013).
(
10.1103/RevModPhys.85.1295
) / Rev. Mod. Phys. by AM Marconnet (2013) -
A. A. Balandin Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011).
(
10.1038/nmat3064
) / Nat. Mater. by AA Balandin (2011) -
E. T. Thostenson, Z. Ren & T.-W. Chou Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61, 1899 (2001).
(
10.1016/S0266-3538(01)00094-X
) / Compos Sci Technol by ET Thostenson (2001) -
R. H. Baughman, A. A. Zakhidov & W. A. de Heer . Carbon Nanotubes—the Route Toward Applications. Science 297, 787 (2002).
(
10.1126/science.1060928
) / Science by RH Baughman (2002) - M. Endo, M. Strano & P. Ajayan in Carbon Nanotubes Vol. 111 Topics in Applied Physics. Ch.2, 13–61 (Springer: Berlin Heidelberg,, 2008). / Carbon Nanotubes Vol. 111 Topics in Applied Physics. by M Endo (2008)
-
X. J. Hu et al. 3 omega Measurements of the Thermal Conductivity of Vertically Oriented Carbon Nanotubes on Silicon. ASME J. Heat Transfer. 128, 1109 (2006).
(
10.1115/1.2352778
) / ASME J. Heat Transfer. by XJ Hu (2006) -
H. Bao, C. Shao, S.R. Luo & M. Hu Enhancement of Interfacial Thermal Transport by Carbon Nanotube-Graphene Junction. J. Appl. Phys. 115, 053524 (2014).
(
10.1063/1.4864221
) / J. Appl. Phys. by H Bao (2014) - M. Hu, P. Keblinski, J. S. Wang & N. Raravikar Interfacial Thermal Conductance between Silicon and a Vertical Carbon Nanotube. J. Appl. Phys. 104, 083583 (2008). / J. Appl. Phys. by M Hu (2008)
-
R. S. Ruoff & D. C. Lorents Mechanical and Thermal Properties of Carbon Nanotubes. Carbon. 33, 925 (1995).
(
10.1016/0008-6223(95)00021-5
) / Carbon. by RS Ruoff (1995) -
E. Pop, D. Mann, Q. Wang, K. Goodson & H. J. Dai Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 6, 96–100 (2006).
(
10.1021/nl052145f
) / Nano Lett. by E Pop (2006) -
S. Berber, Y.-K. Kwon & D. Tománek Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 84, 4613 (2000).
(
10.1103/PhysRevLett.84.4613
) / Phys. Rev. Lett. by S Berber (2000) -
Z. Han & A. Finab Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review . Prog Polym Sci. 36 (7), 914–944 (2010).
(
10.1016/j.progpolymsci.2010.11.004
) / Prog Polym Sci. by Z Han (2010) - V. Zólyomi, J. Koltai, J. Kürti & H. Kuzmany Phonons of single walled carbon nanotubes. In DFT Calculations on Fullerenes and Carbon Nanotubes ed. by V. Basiuk & S. Irle (Signpost Publisher, Kerala, 2008).
-
L. Zhu & B. Li Low thermal conductivity in ultrathin carbon nanotube (2, 1). Sci Rep. 4, 4917 (2014).
(
10.1038/srep04917
) / Sci Rep. by L Zhu (2014) -
J. A. Thomas, R. M. Iutzi & A. J. H. McGaughey Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys. Rev. B. 81, 045413 (2010).
(
10.1103/PhysRevB.81.045413
) / Phys. Rev. B. by JA Thomas (2010) -
A. Cao & J. Qu Size dependent thermal conductivity of single-walled carbon nanotubes. J. Appl. Phys. 112, 013503 (2012).
(
10.1063/1.4730908
) / J. Appl. Phys. by A Cao (2012) -
L. Lindsay, D. A. Broido & N. Mingo Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B. 82, 161402(R) (2010).
(
10.1103/PhysRevB.82.161402
) / Phys. Rev. B. by L Lindsay (2010) -
X. Gu & R. Yang First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. J. Appl. Phys. 117, 025102 (2015).
(
10.1063/1.4905540
) / J. Appl. Phys. by X Gu (2015) - V. Kumar Nanosilicon ed. by V. Kumar (Elsevier Ltd, Chennai, India, 2007).
-
J. A. Thomas et al. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys. Rev. B. 81, 081411(R) (2010).
(
10.1103/PhysRevB.81.081411
) / Phys. Rev. B. by JA Thomas (2010) -
L. Lindsay, D. A. Broido & N. Mingo Flexural phonons and thermal transport in graphene. Phys. Rev. B. 82, 115427 (2010).
(
10.1103/PhysRevB.82.115427
) / Phys. Rev. B. by L Lindsay (2010) -
J. H. Seol et al. Two-Dimensional Phonon Transport in Supported Graphene. Science. 328, 213 (2010).
(
10.1126/science.1184014
) / Science. by JH Seol (2010) -
C. Yu, L. Shi, Z. Yao, D. Li & A. Majumdar Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Lett. 5, 1842 (2005).
(
10.1021/nl051044e
) / Nano Lett. by C Yu (2005) -
Z. Wang, D. Tang, X. Zheng, W. Zhang & Y. Zhu Length-dependent thermal conductivity of single-wall carbon nanotubes: prediction and measurements. Nanotechnology. 18, 475714 (2007).
(
10.1088/0957-4484/18/47/475714
) / Nanotechnology. by Z Wang (2007) -
Z. L. Wang et al. Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Appl. Phys. Lett. 91, 123119 (2007).
(
10.1063/1.2779850
) / Appl. Phys. Lett. by ZL Wang (2007) -
D. Donadio & G. Galli Thermal Conductivity of Isolated and Interacting Carbon Nanotubes: Comparing Results from Molecular Dynamics and the Boltzmann Transport Equation. Phys. Rev. Lett. 99, 255502 (2007).
(
10.1103/PhysRevLett.99.255502
) / Phys. Rev. Lett. by D Donadio (2007) -
A. A. Balandin et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902C907 (2008).
(
10.1021/nl0731872
) -
S. Ghosh et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).
(
10.1063/1.2907977
) / Appl. Phys. Lett. by S Ghosh (2008) - W. Cai et al. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Lett.
-
L. A. Jauregui et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010).
(
10.1149/1.3367938
) / ECS Trans. by LA Jauregui (2010) -
D. L. Nika, E. P. Pokatilov, A. S. Askerov & A. A. Balandin Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B. 79, 155413 (2009).
(
10.1103/PhysRevB.79.155413
) / Phys. Rev. B. by DL Nika (2009) -
D. L. Nika, S. Ghosh, E. P. Pokatilov & A. A. Balandinb Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009).
(
10.1063/1.3136860
) / Appl. Phys. Lett. by DL Nika (2009) -
W. J. Evans, L. Hu & P. Keblinski Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010).
(
10.1063/1.3435465
) / Appl. Phys. Lett. by WJ Evans (2010) -
E. Muñoz, J. Lu & B. I. Yakobson Ballistic thermal conductance of graphene ribbons. Nano Lett. 10, 1652–1656 (2010).
(
10.1021/nl904206d
) / Nano Lett. by E Muñoz (2010) -
D. L. Nika & A. A. Balandin Two-dimensional phonon transport in graphene. J. Phys-Condens. Mat. 24, 233203 (2012).
(
10.1088/0953-8984/24/23/233203
) / J. Phys-Condens. Mat. by DL Nika (2012) -
R. Kubo, M. Toda & N. Hashitsume Statistical. Physics vol 2. (Berlin: Springer, 1985).
(
10.1007/978-3-642-96701-6
) -
J. Che, T. C. & W. A. Goddard III Thermal conductivity of carbon nanotubes. Nanotechnology. 11, 65 (2000).
(
10.1088/0957-4484/11/2/305
) / Nanotechnology. by J Che (2000) -
J. E. Turney, E. S. Landry, A. J. H. McGaughey & C. H. Amon Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Phys. Rev. B. 79, 064301 (2009).
(
10.1103/PhysRevB.79.064301
) / Phys. Rev. B. by JE Turney (2009) -
J. Hone, M. Whitney, C. Piskoti & A. Zettl Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B. 59, 2514 (1999).
(
10.1103/PhysRevB.59.R2514
) / Phys. Rev. B. by J Hone (1999) -
L. Lindsay, D. A. Broido & N. Mingo Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B. 80, 125407 (2009).
(
10.1103/PhysRevB.80.125407
) / Phys. Rev. B. by L Lindsay (2009) -
N. Mingo & D. A. Broido Length Dependence of Carbon Nanotube Thermal Conductivity and the Problem of Long Waves. Nano Lett. 5, No. 7 (2005).
(
10.1021/nl050714d
) / Nano Lett. by N Mingo (2005) -
G. Kresse & J. Furthmüller Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B. by G Kresse (1996) -
G. Kresse & J. Furthmüller Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput Mater Sci. by G Kresse (1996) -
J. P. Perdew, K. Burke & M. Ernzerhof Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1997).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1997) -
P. E. Bl.chl Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B. by PE Bl.chl (1994) -
G. Kresse & D. Joubert From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B. by G Kresse (1999) -
A. Togo, F. Oba & I. Tanaka Tanaka First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B. 78, 134106 (2008).
(
10.1103/PhysRevB.78.134106
) / Phys. Rev. B. by A Togo (2008) - W. Li, J. Carrete, N. A. Katcho & N. Mingo ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 6, 1747C1758 (2014). / Comput. Phys. Commun. by W Li (2014)
Dates
Type | When |
---|---|
Created | 9 years, 10 months ago (Oct. 22, 2015, 4:42 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 9:57 a.m.) |
Indexed | 4 days, 12 hours ago (Aug. 23, 2025, 9:54 p.m.) |
Issued | 9 years, 10 months ago (Oct. 22, 2015) |
Published | 9 years, 10 months ago (Oct. 22, 2015) |
Published Online | 9 years, 10 months ago (Oct. 22, 2015) |
@article{Yue_2015, title={Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep15440}, DOI={10.1038/srep15440}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Yue, Sheng-Ying and Ouyang, Tao and Hu, Ming}, year={2015}, month=oct }