Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractWe fabricated multi-layered graphene/MoS2heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2onto Au metal pads on a SiO2/Si substrateviaa contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2have tunable negative barriers in the range of 300 to −46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

Bibliography

Qiu, D., & Kim, E. K. (2015). Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors. Scientific Reports, 5(1).

Authors 2
  1. Dongri Qiu (first)
  2. Eun Kyu Kim (additional)
References 39 Referenced 67
  1. Ganatra, R. & Zhang, Q. Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano 8, 4074–4099 (2014). (10.1021/nn405938z) / ACS Nano by R Ganatra (2014)
  2. Hsu, A. et al. Large-Area 2-D Electronics: Materials, Technology and Devices. Proc. IEEE, 101, 1638–1652 (2013). (10.1109/JPROC.2013.2251311) / Proc. IEEE by A Hsu (2013)
  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nanotechnol by QH Wang (2012)
  4. Wu, S. F. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nat. Phys. 9, 149–153 (2013). (10.1038/nphys2524) / Nat. Phys by SF Wu (2013)
  5. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). (10.1038/nnano.2012.96) / Nat. Nanotechnol by KF Mak (2012)
  6. Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  7. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl. Acad. Sci. USA. by KS Novoselov (2005)
  8. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  9. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013). (10.1038/nnano.2012.224) / Nat. Nanotechnol by T Georgiou (2013)
  10. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013). (10.1038/nmat3518) / Nat. Mater. by WJ Yu (2013)
  11. Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013). (10.1038/nnano.2013.206) / Nat. Nanotechnol by K Roy (2013)
  12. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). (10.1038/ncomms2652) / Nat. Commun. by MS Choi (2013)
  13. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  14. Dankert, A., Langouche, L., Kamalakar, M. V. & Dash, S. P. High-Performance Molybdenum Disulfide Field-Effect Transistors with Spin Tunnel Contacts. ACS Nano 8, 476–482 (2014). (10.1021/nn404961e) / ACS Nano by A Dankert (2014)
  15. Afanasev, V. V., Bassler, M., Pensl, G. & Schulz, M. Intrinsic SiC/SiO2 Interface States. physica status solidi (a) 162, 321–337, (1997). (10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F) / Intrinsic SiC/SiO2 Interface States. physica status solidi (a) by VV Afanasev (1997)
  16. Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013). (10.1002/smll.201300134) / Small by J Yoon (2013)
  17. Yuchen, D. et al. MoS2 Field-effect Transistors with Graphene/Metal Heterocontacts. Electron Device Letters, IEEE 35, 599–601 (2014). (10.1109/LED.2014.2313340) / Electron Device Letters, IEEE by D Yuchen (2014)
  18. Yu, L. et al. Graphene-MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Lett. 14, 3055–3063 (2014). (10.1021/nl404795z) / Nano Lett. by L Yu (2014)
  19. Liu, Y. et al. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Lett. 15, 3030–3034 (2015). (10.1021/nl504957p) / Nano Lett. by Y Liu (2015)
  20. Li, H. et al. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 22, 1385–1390 (2012). (10.1002/adfm.201102111) / Adv. Funct. Mater. by H Li (2012)
  21. Late, D. J., Liu, B., Matte, H., Dravid, V. P. & Rao, C. N. R. Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano 6, 5635–5641 (2012). (10.1021/nn301572c) / ACS Nano by DJ Late (2012)
  22. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013). (10.1021/nn402954e) / ACS Nano by G-H Lee (2013)
  23. Chan, M. Y. et al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013). (10.1039/c3nr03220e) / Nanoscale by MY Chan (2013)
  24. Jin, T., Kang, J., Su Kim, E., Lee, S. & Lee, C. Suspended single-layer MoS2 devices. J. Appl. Phys. 114, 164509, (2013). (10.1063/1.4827477) / J. Appl. Phys. by T Jin (2013)
  25. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). (10.1038/nnano.2013.30) / Nat. Nanotechnol by MS Fuhrer (2013)
  26. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). (10.1038/ncomms2018) / Nat. Commun. by S Kim (2012)
  27. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotechnol by B Radisavljevic (2011)
  28. Sze, S. M. & Ng, K. K. Physics of semiconductor devices. 3rd edn, (John Wiley & Sons 2006). (10.1002/0470068329)
  29. Wang, W. et al. Controllable Schottky Barriers between MoS2 and Permalloy. Sci Rep 4, 6928 (2014). (10.1038/srep06928) / Sci Rep by W Wang (2014)
  30. Chuang, S. et al. MoS2 P-type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 14, 1337–1342 (2014). (10.1021/nl4043505) / Nano Lett. by S Chuang (2014)
  31. Tao, M., Udeshi, D., Agarwal, S., Maldonado, E. & Kirk, W. P. Negative Schottky barrier between titanium and n-type Si(001) for low-resistance ohmic contacts. Solid-State Electron. 48, 335–338 (2004). (10.1016/S0038-1101(03)00316-2) / Solid-State Electron by M Tao (2004)
  32. Chen, J. R. et al. Control of Schottky Barriers in Single Layer MoS2 Transistors with Ferromagnetic Contacts. Nano Lett. 13, 3106–3110 (2013). (10.1021/nl4010157) / Nano Lett. by JR Chen (2013)
  33. Kaushik, N. et al. Schottky barrier heights for Au and Pd contacts to MoS2 . Appl. Phys. Lett. 105, 113505 (2014). (10.1063/1.4895767) / Appl. Phys. Lett. by N Kaushik (2014)
  34. Tung, R. T. Chemical Bonding and Fermi Level Pinning at Metal-Semiconductor Interfaces. Phys. Rev. Lett. 84, 6078–6081 (2000). (10.1103/PhysRevLett.84.6078) / Phys. Rev. Lett. by RT Tung (2000)
  35. Walia, S. et al. Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Appl. Phys. Lett. 103, 232105 (2013). (10.1063/1.4840317) / Appl. Phys. Lett. by S Walia (2013)
  36. Ochedowski, O. et al. Effect of contaminations and surface preparation on the work function of single layer MoS2 . Beilstein J. nanotechnol. 5, 291–297 (2014). (10.3762/bjnano.5.32) / Beilstein J. nanotechnol by O Ochedowski (2014)
  37. Yu, Y.-J. et al. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 9, 3430–3434 (2009). (10.1021/nl901572a) / Nano Lett. by Y-J Yu (2009)
  38. Li, Y., Xu, C. Y., Zhang, B. Y. & Zhen, L. Work function modulation of bilayer MoS2 nanoflake by backgate electric field effect. Appl. Phys. Lett. 103, 033122 (2013). (10.1063/1.4816076) / Appl. Phys. Lett. by Y Li (2013)
  39. Choi, J.-Y. Graphene transfer: A stamp for all substrates. Nat. Nanotechnol. 8, 311–312 (2013). (10.1038/nnano.2013.74) / Nat. Nanotechnol by J-Y Choi (2013)
Dates
Type When
Created 9 years, 11 months ago (Sept. 3, 2015, 7:03 a.m.)
Deposited 1 year, 2 months ago (June 10, 2024, 6:22 p.m.)
Indexed 3 weeks ago (Aug. 6, 2025, 8:45 a.m.)
Issued 9 years, 11 months ago (Sept. 3, 2015)
Published 9 years, 11 months ago (Sept. 3, 2015)
Published Online 9 years, 11 months ago (Sept. 3, 2015)
Funders 0

None

@article{Qiu_2015, title={Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep13743}, DOI={10.1038/srep13743}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Qiu, Dongri and Kim, Eun Kyu}, year={2015}, month=sep }