Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractElongation factor G (EF-G), a translational GTPase responsible for tRNA-mRNA translocation possesses a conserved histidine (H91 in Escherichia coli) at the apex of switch-II, which has been implicated in GTPase activation and GTP hydrolysis. While H91A, H91R and H91E mutants showed different degrees of defect in ribosome associated GTP hydrolysis, H91Q behaved like the WT. However, all these mutants, including H91Q, are much more defective in inorganic phosphate (Pi) release, thereby suggesting that H91 facilitates Pi release. In crystal structures of the ribosome bound EF-G•GTP a tight coupling between H91 and the γ-phosphate of GTP can be seen. Following GTP hydrolysis, H91 flips ~140° in the opposite direction, probably with Pi still coupled to it. This, we suggest, promotes Pi to detach from GDP and reach the inter-domain space of EF-G, which constitutes an exit path for the Pi. Molecular dynamics simulations are consistent with this hypothesis and demonstrate a vital role of an Mg2+ ion in the process.

Bibliography

Koripella, R. K., Holm, M., Dourado, D., Mandava, C. S., Flores, S., & Sanyal, S. (2015). A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate. Scientific Reports, 5(1).

Authors 6
  1. Ravi Kiran Koripella (first)
  2. Mikael Holm (additional)
  3. Daniel Dourado (additional)
  4. Chandra Sekhar Mandava (additional)
  5. Samuel Flores (additional)
  6. Suparna Sanyal (additional)
References 47 Referenced 24
  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991). (10.1038/349117a0) / Nature by HR Bourne (1991)
  2. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999). (10.1038/17969) / Nature by IR Vetter (1999)
  3. Hilgenfeld, R. Regulatory GTPases. Curr Opin Struct Biol 5, 810–817 (1995). (10.1016/0959-440X(95)80015-8) / Curr Opin Struct Biol by R Hilgenfeld (1995)
  4. Chen, Y., Feng, S., Kumar, V., Ero, R. & Gao, Y. G. Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 20, 1077–1084 (2013). (10.1038/nsmb.2645) / Nat Struct Mol Biol by Y Chen (2013)
  5. Tourigny, D. S., Fernandez, I. S., Kelley, A. C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490 (2013). (10.1126/science.1235490) / Science by DS Tourigny (2013)
  6. Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010). (10.1126/science.1194460) / Science by RM Voorhees (2010)
  7. Cool, R. H. & Parmeggiani, A. Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. Biochemistry 30, 362–366 (1991). (10.1021/bi00216a008) / Biochemistry by RH Cool (1991)
  8. Daviter, T., Wieden, H. J. & Rodnina, M. V. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J Mol Biol 332, 689–699 (2003). (10.1016/S0022-2836(03)00947-1) / J Mol Biol by T Daviter (2003)
  9. Scarano, G., Krab, I. M., Bocchini, V. & Parmeggiani, A. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine. FEBS Lett 365, 214–218 (1995). (10.1016/0014-5793(95)00469-P) / FEBS Lett by G Scarano (1995)
  10. Zeidler, W. et al. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. Eur J Biochem 229, 596–604 (1995). (10.1111/j.1432-1033.1995.tb20503.x) / Eur J Biochem by W Zeidler (1995)
  11. Cunha, C. E. et al. Dual use of GTP hydrolysis by elongation factor G on the ribosome. Translation 1, e24315-1–11 (2013). (10.4161/trla.24315) / Translation by CE Cunha (2013)
  12. Holtkamp, W. et al. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J 33, 1073–1085 (2014). (10.1002/embj.201387465) / EMBO J by W Holtkamp (2014)
  13. Salsi, E., Farah, E., Dann, J. & Ermolenko, D. N. Following movement of domain IV of elongation factor G during ribosomal translocation. Proc Natl Acad Sci USA 111, 15060–15065 (2014). (10.1073/pnas.1410873111) / Proc Natl Acad Sci USA by E Salsi (2014)
  14. Liljas, A., Ehrenberg, M. & Aqvist, J. Comment on “The mechanism for activation of GTP hydrolysis on the ribosome”. Science 333, 37 (2011). (10.1126/science.1202472) / Science by A Liljas (2011)
  15. Wallin, G., Kamerlin, S. C. & Aqvist, J. Energetics of activation of GTP hydrolysis on the ribosome. Nat Commun 4, 1733 (2013). (10.1038/ncomms2741) / Nat Commun by G Wallin (2013)
  16. Aqvist, J. & Kamerlin, S. C. The Conformation of a Catalytic Loop Is Central to GTPase Activity on the Ribosome. Biochemistry 54, 546–556 (2015). (10.1021/bi501373g) / Biochemistry by J Aqvist (2015)
  17. Li, W. et al. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. Science Advances (2015), 10.1126/sciadv.1500169. (10.2210/pdb3j9z/pdbx)
  18. Peske, F., Matassova, N. B., Savelsbergh, A., Rodnina, M. V. & Wintermeyer, W. Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Mol Cell 6, 501–505 (2000). (10.1016/S1097-2765(00)00049-6) / Mol Cell by F Peske (2000)
  19. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol Cell 11, 1517–1523 (2003). (10.1016/S1097-2765(03)00230-2) / Mol Cell by A Savelsbergh (2003)
  20. Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W. & Rodnina, M. V. Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J 24, 4316–4323 (2005). (10.1038/sj.emboj.7600884) / EMBO J by A Savelsbergh (2005)
  21. Savelsbergh, A., Rodnina, M. V. & Wintermeyer, W. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15, 772–780 (2009). (10.1261/rna.1592509) / RNA by A Savelsbergh (2009)
  22. Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009). (10.1126/science.1179709) / Science by YG Gao (2009)
  23. Yamamoto, H. et al. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 12, 89–100 (2014). (10.1038/nrmicro3176) / Nat Rev Microbiol by H Yamamoto (2014)
  24. Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013). (10.1126/science.1236086) / Science by J Zhou (2013)
  25. Koripella, R. K. et al. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 287, 30257–30267 (2012). (10.1074/jbc.M112.378521) / J Biol Chem by RK Koripella (2012)
  26. Ticu, C., Murataliev, M., Nechifor, R. & Wilson, K. S. A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis and ribosome translocation. J Biol Chem 286, 21697–21705 (2011). (10.1074/jbc.M110.214056) / J Biol Chem by C Ticu (2011)
  27. Johanson, U., Aevarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J Mol Biol 258, 420–432 (1996). (10.1006/jmbi.1996.0259) / J Mol Biol by U Johanson (1996)
  28. Wilden, B., Savelsbergh, A., Rodnina, M. V. & Wintermeyer, W. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci USA 103, 13670–13675 (2006). (10.1073/pnas.0606099103) / Proc Natl Acad Sci USA by B Wilden (2006)
  29. Maracci, C., Peske, F., Dannies, E., Pohl, C. & Rodnina, M. V. Ribosome-induced tuning of GTP hydrolysis by a translational GTPase. Proc Natl Acad Sci USA 111, 14418–14423 (2014). (10.1073/pnas.1412676111) / Proc Natl Acad Sci USA by C Maracci (2014)
  30. Savelsbergh, A., Mohr, D., Wilden, B., Wintermeyer, W. & Rodnina, M. V. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. The Journal of biological chemistry 275, 890–894 (2000). (10.1074/jbc.275.2.890) / The Journal of biological chemistry by A Savelsbergh (2000)
  31. Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997). (10.1038/385037a0) / Nature by MV Rodnina (1997)
  32. Brune, M., Hunter, J. L., Corrie, J. E. & Webb, M. R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33, 8262–8271 (1994). (10.1021/bi00193a013) / Biochemistry by M Brune (1994)
  33. Huang, C., Mandava, C. S. & Sanyal, S. The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits. J Mol Biol 399, 145–153 (2010). (10.1016/j.jmb.2010.04.009) / J Mol Biol by C Huang (2010)
  34. Dourado, D. F. & Flores, S. C. A multiscale approach to predicting affinity changes in protein-protein interfaces. Proteins 82, 2681–2690 (2014). (10.1002/prot.24634) / Proteins by DF Dourado (2014)
  35. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field Journal of Computational Chemistry 25, 1157–1174 (2004). (10.1002/jcc.20035) / Journal of Computational Chemistry by JM Wang (2004)
  36. Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D. J. The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 104, 19671–19678 (2007). (10.1073/pnas.0708517104) / Proc Natl Acad Sci USA by J Frank (2007)
  37. Kuhle, B. & Ficner, R. A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 33, 2547–2563 (2014). (10.15252/embj.201488517) / EMBO J by B Kuhle (2014)
  38. Hansson, S., Singh, R., Gudkov, A. T., Liljas, A. & Logan, D. T. Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett 579, 4492–4497 (2005). (10.1016/j.febslet.2005.07.016) / FEBS Lett by S Hansson (2005)
  39. Hansson, S., Singh, R., Gudkov, A. T., Liljas, A. & Logan, D. T. Structural insights into fusidic acid resistance and sensitivity in EF-G. J Mol Biol 348, 939–949 (2005). (10.1016/j.jmb.2005.02.066) / J Mol Biol by S Hansson (2005)
  40. Laurberg, M. et al. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303, 593–603 (2000). (10.1006/jmbi.2000.4168) / J Mol Biol by M Laurberg (2000)
  41. Mandava, C. S. et al. Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Res 40, 2054–2064 (2012). (10.1093/nar/gkr1031) / Nucleic Acids Res by CS Mandava (2012)
  42. Meagher, K. L., Redman, L. T. & Carlson, H. A. Development of polyphosphate parameters for use with the AMBER force field. Journal of Computational Chemistry 24, 1016–1025 (2003). (10.1002/jcc.10262) / Journal of Computational Chemistry by KL Meagher (2003)
  43. Frisch, M. J. et al. Gaussian 09, Revision D. 01, (ed. Gaussian, Inc., Wallingford CT, 2009).
  44. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. Journal of Chemical Physics 126, (2007); 10.1063/1.2408420. (10.1063/1.2408420)
  45. Parrinello, M. & Rahman, A. Polymorphic Transitions in Single-Crystals - a New Molecular-Dynamics Method. Journal of Applied Physics 52, 7182–7190 (1981). (10.1063/1.328693) / Journal of Applied Physics by M Parrinello (1981)
  46. Essmann, U. et al. A Smooth Particle Mesh Ewald Method. Journal of Chemical Physics 103, 8577–8593 (1995). (10.1063/1.470117) / Journal of Chemical Physics by U Essmann (1995)
  47. Lindahl, E., Hess, B. & Spoel, D. V. D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of molecular modeling 7, 306–317 (2001). (10.1007/s008940100045) / Journal of molecular modeling by E Lindahl, (2001)
Dates
Type When
Created 10 years ago (Aug. 12, 2015, 5:32 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:49 p.m.)
Indexed 2 months ago (June 26, 2025, 1:46 p.m.)
Issued 10 years ago (Aug. 12, 2015)
Published 10 years ago (Aug. 12, 2015)
Published Online 10 years ago (Aug. 12, 2015)
Funders 0

None

@article{Koripella_2015, title={A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep12970}, DOI={10.1038/srep12970}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Koripella, Ravi Kiran and Holm, Mikael and Dourado, Daniel and Mandava, Chandra Sekhar and Flores, Samuel and Sanyal, Suparna}, year={2015}, month=aug }