Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractHuntington’s disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Recent evidence suggests that HD is a consequence of multimodal, non-mutually exclusive mechanisms of pathogenesis that involve both HTT protein- and HTT RNA-triggered mechanisms. Here we provide further evidence for the role of expanded HTT (expHTT) RNA in HD by demonstrating that a fragment of expHTT is cytotoxic in the absence of any translation and that the extent of cytotoxicity is similar to the cytotoxicity of an expHTT protein fragment encoded by a transcript of similar length and with a similar repeat size. In addition, full-length (FL) expHTT is retained in the nucleus. Overexpression of the splicing factor muscleblind-like 1 (MBNL1) increases nuclear retention of expHTT and decreases the expression of expHTT protein in the cytosol. The splicing and nuclear export factor U2AF65 has the opposite effect, decreasing expHTT nuclear retention and increasing expression of expHTT protein. This suggests that MBNL1 and U2AF65 play a role in nuclear export of expHTT RNA.

Bibliography

Sun, X., Li, P. P., Zhu, S., Cohen, R., Marque, L. O., Ross, C. A., Pulst, S. M., Chan, H. Y. E., Margolis, R. L., & Rudnicki, D. D. (2015). Nuclear retention of full-length HTT RNA is mediated by splicing factors MBNL1 and U2AF65. Scientific Reports, 5(1).

Authors 10
  1. Xin Sun (first)
  2. Pan P. Li (additional)
  3. Shanshan Zhu (additional)
  4. Rachael Cohen (additional)
  5. Leonard O. Marque (additional)
  6. Christopher A. Ross (additional)
  7. Stefan M. Pulst (additional)
  8. Ho Yin Edwin Chan (additional)
  9. Russell L. Margolis (additional)
  10. Dobrila D. Rudnicki (additional)
References 60 Referenced 45
  1. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72, 971–983 (1993). (10.1016/0092-8674(93)90585-E)
  2. Ross, C. A. et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature reviews. Neurology 10, 204–216, 10.1038/nrneurol.2014.24 (2014). (10.1038/nrneurol.2014.24) / Nature reviews. Neurology by CA Ross (2014)
  3. Li, L. B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111, 10.1038/nature06909 (2008). (10.1038/nature06909) / Nature by LB Li (2008)
  4. Moseley, M. L. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature genetics 38, 758–769, 10.1038/ng1827 (2006). (10.1038/ng1827) / Nature genetics by ML Moseley (2006)
  5. Ikeda, Y., Daughters, R. S. & Ranum, L. P. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7, 150–158, 10.1007/s12311-008-0010-7 (2008). (10.1007/s12311-008-0010-7) / Cerebellum by Y Ikeda (2008)
  6. Rudnicki, D. D., Pletnikova, O., Vonsattel, J. P., Ross, C. A. & Margolis, R. L. A comparison of huntington disease and huntington disease-like 2 neuropathology. Journal of neuropathology and experimental neurology 67, 366–374, 10.1097/NEN.0b013e31816b4aee (2008). (10.1097/NEN.0b013e31816b4aee) / Journal of neuropathology and experimental neurology by DD Rudnicki (2008)
  7. Rudnicki, D. D. et al. Huntington’s disease–like 2 is associated with CUG repeat-containing RNA foci. Annals of neurology 61, 272–282, 10.1002/ana.21081 (2007). (10.1002/ana.21081) / Annals of neurology by DD Rudnicki (2007)
  8. Rudnicki, D. D., Margolis, R. L., Pearson, C. E. & Krzyzosiak, W. J. Diced triplets expose neurons to RISC. PLoS genetics 8, e1002545, 10.1371/journal.pgen.1002545 (2012). (10.1371/journal.pgen.1002545) / PLoS genetics by DD Rudnicki (2012)
  9. Fiszer, A. & Krzyzosiak, W. J. RNA toxicity in polyglutamine disorders: concepts, models and progress of research. J Mol Med (Berl) 91, 683–691, 10.1007/s00109-013-1016-2 (2013). (10.1007/s00109-013-1016-2) / J Mol Med (Berl) by A Fiszer (2013)
  10. Nalavade, R., Griesche, N., Ryan, D. P., Hildebrand, S. & Krauss, S. Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell death & disease 4, e752, 10.1038/cddis.2013.276 (2013). (10.1038/cddis.2013.276) / Cell death & disease by R Nalavade (2013)
  11. Mykowska, A., Sobczak, K., Wojciechowska, M., Kozlowski, P. & Krzyzosiak, W. J. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic acids research 39, 8938–8951, 10.1093/nar/gkr608 (2011). (10.1093/nar/gkr608) / Nucleic acids research by A Mykowska (2011)
  12. de Mezer, M., Wojciechowska, M., Napierala, M., Sobczak, K. & Krzyzosiak, W. J. Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic acids research 39, 3852–3863, 10.1093/nar/gkq1323 (2011). (10.1093/nar/gkq1323) / Nucleic acids research by M de Mezer (2011)
  13. Chung, D. W., Rudnicki, D. D., Yu, L. & Margolis, R. L. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Human molecular genetics 20, 3467–3477, 10.1093/hmg/ddr263 (2011). (10.1093/hmg/ddr263) / Human molecular genetics by DW Chung (2011)
  14. Banez-Coronel, M. et al. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS genetics 8, e1002481, 10.1371/journal.pgen.1002481 (2012). (10.1371/journal.pgen.1002481) / PLoS genetics by M Banez-Coronel (2012)
  15. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the United States of America 108, 260–265, 10.1073/pnas.1013343108 (2011). (10.1073/pnas.1013343108) / Proceedings of the National Academy of Sciences of the United States of America by T Zu (2011)
  16. Peters, M. F. et al. Nuclear targeting of mutant Huntingtin increases toxicity. Molecular and cellular neurosciences 14, 121–128, 10.1006/mcne.1999.0773 (1999). (10.1006/mcne.1999.0773) / Molecular and cellular neurosciences by MF Peters (1999)
  17. Wojciechowska, M. & Krzyzosiak, W. J. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Human molecular genetics 20, 3811–3821, 10.1093/hmg/ddr299 (2011). (10.1093/hmg/ddr299) / Human molecular genetics by M Wojciechowska (2011)
  18. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America 110, E4530–4539, 10.1073/pnas.1318835110 (2013). (10.1073/pnas.1318835110) / Proceedings of the National Academy of Sciences of the United States of America by C Lagier-Tourenne (2013)
  19. Waldron-Roby, E. et al. Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. The Journal of neuroscience: the official journal of the Society for Neuroscience 32, 183–193, 10.1523/JNEUROSCI.1305-11.2012 (2012). (10.1523/JNEUROSCI.1305-11.2012) / The Journal of neuroscience: the official journal of the Society for Neuroscience by E Waldron-Roby (2012)
  20. Jiang, H., Mankodi, A., Swanson, M. S., Moxley, R. T. & Thornton, C. A. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Human molecular genetics 13, 3079–3088, 10.1093/hmg/ddh327 (2004). (10.1093/hmg/ddh327) / Human molecular genetics by H Jiang (2004)
  21. Dansithong, W., Paul, S., Comai, L. & Reddy, S. MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. The Journal of biological chemistry 280, 5773–5780, 10.1074/jbc.M410781200 (2005). (10.1074/jbc.M410781200) / The Journal of biological chemistry by W Dansithong (2005)
  22. Daughters, R. S. et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS genetics 5, e1000600, 10.1371/journal.pgen.1000600 (2009). (10.1371/journal.pgen.1000600) / PLoS genetics by RS Daughters (2009)
  23. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Human molecular genetics 15, 2087–2097, 10.1093/hmg/ddl132 (2006). (10.1093/hmg/ddl132) / Human molecular genetics by X Lin (2006)
  24. He, F. et al. Solution structure of the RNA binding domain in the human muscleblind-like protein 2. Protein science: a publication of the Protein Society 18, 80–91, 10.1002/pro.17 (2009). (10.1002/pro.17) / Protein science: a publication of the Protein Society by F He (2009)
  25. Grammatikakis, I., Goo, Y. H., Echeverria, G. V. & Cooper, T. A. Identification of MBNL1 and MBNL3 domains required for splicing activation and repression. Nucleic acids research 39, 2769–2780, 10.1093/nar/gkq1155 (2011). (10.1093/nar/gkq1155) / Nucleic acids research by I Grammatikakis (2011)
  26. Kino, Y. et al. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Human molecular genetics, 10.1093/hmg/ddu492 (2014). (10.1093/hmg/ddu492)
  27. Goers, E. S., Purcell, J., Voelker, R. B., Gates, D. P. & Berglund, J. A. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic acids research 38, 2467–2484, 10.1093/nar/gkp1209 (2010). (10.1093/nar/gkp1209) / Nucleic acids research by ES Goers (2010)
  28. Krzyzosiak, W. J. et al. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic acids research 40, 11–26, 10.1093/nar/gkr729 (2012). (10.1093/nar/gkr729) / Nucleic acids research by WJ Krzyzosiak (2012)
  29. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annual review of neuroscience 30, 575–621, 10.1146/annurev.neuro.29.051605.113042 (2007). (10.1146/annurev.neuro.29.051605.113042) / Annual review of neuroscience by HT Orr (2007)
  30. Huynh, D. P., Yang, H. T., Vakharia, H., Nguyen, D. & Pulst, S. M. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Human molecular genetics 12, 1485–1496 (2003). (10.1093/hmg/ddg175) / Human molecular genetics by DP Huynh (2003)
  31. Margolis, R. L., Rudnicki, D. D. & Holmes, S. E. Huntington’s disease like-2: review and update. Acta neurologica Taiwanica 14, 1–8 (2005). / Acta neurologica Taiwanica by RL Margolis (2005)
  32. Seixas, A. I. et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Annals of neurology 71, 245–257, 10.1002/ana.22598 (2012). (10.1002/ana.22598) / Annals of neurology by AI Seixas (2012)
  33. Carmody, S. R. & Wente, S. R. mRNA nuclear export at a glance. Journal of cell science 122, 1933–1937, 10.1242/jcs.041236 (2009). (10.1242/jcs.041236) / Journal of cell science by SR Carmody (2009)
  34. Tsoi, H., Lau, C. K., Lau, K. F. & Chan, H. Y. Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Human molecular genetics 20, 3787–3797, 10.1093/hmg/ddr297 (2011). (10.1093/hmg/ddr297) / Human molecular genetics by H Tsoi (2011)
  35. Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proceedings of the National Academy of Sciences of the United States of America 106, 9203–9208, 10.1073/pnas.0900342106 (2009). (10.1073/pnas.0900342106) / Proceedings of the National Academy of Sciences of the United States of America by MB Warf (2009)
  36. Arrasate, M. & Finkbeiner, S. Protein aggregates in Huntington’s disease. Experimental neurology 238, 1–11, 10.1016/j.expneurol.2011.12.013 (2012). (10.1016/j.expneurol.2011.12.013) / Experimental neurology by M Arrasate (2012)
  37. Slow, E. J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proceedings of the National Academy of Sciences of the United States of America 102, 11402–11407, 10.1073/pnas.0503634102 (2005). (10.1073/pnas.0503634102) / Proceedings of the National Academy of Sciences of the United States of America by EJ Slow (2005)
  38. Graham, R. K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191, 10.1016/j.cell.2006.04.026 (2006). (10.1016/j.cell.2006.04.026) / Cell by RK Graham (2006)
  39. Gu, X. et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64, 828–840, 10.1016/j.neuron.2009.11.020 (2009). (10.1016/j.neuron.2009.11.020) / Neuron by X Gu (2009)
  40. Gray, M. et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. The Journal of neuroscience: the official journal of the Society for Neuroscience 28, 6182–6195, 10.1523/JNEUROSCI.0857-08.2008 (2008). (10.1523/JNEUROSCI.0857-08.2008) / The Journal of neuroscience: the official journal of the Society for Neuroscience by M Gray (2008)
  41. Yu, Z. et al. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Human molecular genetics, 10.1093/hmg/ddu507 (2014). (10.1093/hmg/ddu507)
  42. Zolotukhin, A. S., Tan, W., Bear, J., Smulevitch, S. & Felber, B. K. U2AF participates in the binding of TAP (NXF1) to mRNA. The Journal of biological chemistry 277, 3935–3942, 10.1074/jbc.M107598200 (2002). (10.1074/jbc.M107598200) / The Journal of biological chemistry by AS Zolotukhin (2002)
  43. Garcia-Lopez, A. et al. Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PloS one 3, e1595, 10.1371/journal.pone.0001595 (2008). (10.1371/journal.pone.0001595) / PloS one by A Garcia-Lopez (2008)
  44. Mastroyiannopoulos, N. P., Feldman, M. L., Uney, J. B., Mahadevan, M. S. & Phylactou, L. A. Woodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3′ untranslated region transcripts. EMBO reports 6, 458–463, 10.1038/sj.embor.7400390 (2005). (10.1038/sj.embor.7400390) / EMBO reports by NP Mastroyiannopoulos (2005)
  45. Ricci, E. P. et al. Staufen1 senses overall transcript secondary structure to regulate translation. Nature structural & molecular biology 21, 26–35, 10.1038/nsmb.2739 (2014). (10.1038/nsmb.2739) / Nature structural & molecular biology by EP Ricci (2014)
  46. Ravel-Chapuis, A. et al. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. The Journal of cell biology 196, 699–712, 10.1083/jcb.201108113 (2012). (10.1083/jcb.201108113) / The Journal of cell biology by A Ravel-Chapuis (2012)
  47. Tsvetkov, A. S. et al. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nature chemical biology 9, 586–592, 10.1038/nchembio.1308 (2013). (10.1038/nchembio.1308) / Nature chemical biology by AS Tsvetkov (2013)
  48. Sun, X. et al. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Human molecular genetics 23, 6302–6317, 10.1093/hmg/ddu349 (2014). (10.1093/hmg/ddu349) / Human molecular genetics by X Sun (2014)
  49. Fiszer, A. et al. An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases. BMC molecular biology 13, 6, 10.1186/1471-2199-13-6 (2012). (10.1186/1471-2199-13-6) / BMC molecular biology by A Fiszer (2012)
  50. Kumar, A. et al. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS chemical biology 7, 496–505, 10.1021/cb200413a (2012). (10.1021/cb200413a) / ACS chemical biology by A Kumar (2012)
  51. Masuda, A. et al. CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Scientific reports 2, 209, 10.1038/srep00209 (2012). (10.1038/srep00209) / Scientific reports by A Masuda (2012)
  52. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724, 10.1016/j.cell.2012.06.041 (2012). (10.1016/j.cell.2012.06.041) / Cell by ET Wang (2012)
  53. Ho, T. H. et al. Muscleblind proteins regulate alternative splicing. The EMBO journal 23, 3103–3112, 10.1038/sj.emboj.7600300 (2004). (10.1038/sj.emboj.7600300) / The EMBO journal by TH Ho (2004)
  54. Shao, C. et al. Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nature structural & molecular biology 21, 997–1005, 10.1038/nsmb.2906 (2014). (10.1038/nsmb.2906) / Nature structural & molecular biology by C Shao (2014)
  55. Wang, L. C. et al. Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cellular and molecular life sciences: CMLS 68, 1255–1267, 10.1007/s00018-010-0522-4 (2011). (10.1007/s00018-010-0522-4) / Cellular and molecular life sciences: CMLS by LC Wang (2011)
  56. Yu, Z. et al. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Human molecular genetics 24, 954–962, 10.1093/hmg/ddu507 (2015). (10.1093/hmg/ddu507) / Human molecular genetics by Z Yu (2015)
  57. Chamberlain, C. M. & Ranum, L. P. Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise. Human molecular genetics 21, 4645–4654, 10.1093/hmg/dds306 (2012). (10.1093/hmg/dds306) / Human molecular genetics by CM Chamberlain (2012)
  58. de Haro, M. et al. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Human molecular genetics 15, 2138–2145, 10.1093/hmg/ddl137 (2006). (10.1093/hmg/ddl137) / Human molecular genetics by M de Haro (2006)
  59. Cooper, J. K. et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Human molecular genetics 7, 783–790 (1998). (10.1093/hmg/7.5.783) / Human molecular genetics by JK Cooper (1998)
  60. Ratovitski, T. et al. Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. The Journal of biological chemistry 284, 10855–10867, 10.1074/jbc.M804813200 (2009). (10.1074/jbc.M804813200) / The Journal of biological chemistry by T Ratovitski (2009)
Dates
Type When
Created 10 years, 1 month ago (July 28, 2015, 8:58 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 9:28 a.m.)
Indexed 1 year ago (Aug. 26, 2024, 8:31 p.m.)
Issued 10 years, 1 month ago (July 28, 2015)
Published 10 years, 1 month ago (July 28, 2015)
Published Online 10 years, 1 month ago (July 28, 2015)
Funders 0

None

@article{Sun_2015, title={Nuclear retention of full-length HTT RNA is mediated by splicing factors MBNL1 and U2AF65}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep12521}, DOI={10.1038/srep12521}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Sun, Xin and Li, Pan P. and Zhu, Shanshan and Cohen, Rachael and Marque, Leonard O. and Ross, Christopher A. and Pulst, Stefan M. and Chan, Ho Yin Edwin and Margolis, Russell L. and Rudnicki, Dobrila D.}, year={2015}, month=jul }