Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThe structures, stabilities and electronic properties of monolayer black phosphorus (M-BP) with different kinds of defects are investigated within the frame of density-functional theory. All the possible configurations of defects in M-BP are explored and the calculated results suggest that the stabilities of the configurations with different kinds of defects are greatly related to broken bonds, structural deformation and the character of the bonding. The configurations with two or three vacancies are energetically more favorable than the ones with a single vacancy. Meanwhile, the doping of two foreign atoms, such as sulfur, silicon or aluminum, is more stable than that of the corresponding single dopant. The electronic properties of M-BP are greatly affected by the types of defects. The single S-doped M-BP not only retains the character of a direct semiconductor, but it also can enlarge the band gap by 0.24 eV relative to the perfect one. Such results reveal that the defects not only greatly affect the electronic properties, but they also can be used as an effective way to modulate the band gap for the different applications of M-BP in electronic devices.

Bibliography

Li, X.-B., Guo, P., Cao, T.-F., Liu, H., Lau, W.-M., & Liu, L.-M. (2015). Structures, stabilities and electronic properties of defects in monolayer black phosphorus. Scientific Reports, 5(1).

Authors 6
  1. Xi-Bo Li (first)
  2. Pan Guo (additional)
  3. Teng-Fei Cao (additional)
  4. Hao Liu (additional)
  5. Woon-Ming Lau (additional)
  6. Li-Min Liu (additional)
References 43 Referenced 97
  1. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669, doi:10.1126/science.1102896 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater 6, 183–191, doi:10.1038/nmat1849 (2007). (10.1038/nmat1849) / Nat. Mater by AK Geim (2007)
  3. Rasuli, R., zad, A. I. & Ahadian, M. M. Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory. Nanotechnology 21, 185503, doi:10.1088/0957-4484/21/18/185503 (2010). (10.1088/0957-4484/21/18/185503) / Nanotechnology by R Rasuli (2010)
  4. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater 10, 569–581, doi:10.1038/nmat3064 (2011). (10.1038/nmat3064) / Nat. Mater by AA Balandin (2011)
  5. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nano 5, 722–726, doi:10.1038/nnano.2010.172 (2010). (10.1038/nnano.2010.172) / Nat. Nano by CR Dean (2010)
  6. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem 5, 263–275, doi:10.1038/nchem.1589 (2013). (10.1038/nchem.1589) / Nat. Chem by M Chhowalla (2013)
  7. Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. App. Phys. Lett. 103, doi:10.1063/1.4817409 (2013). (10.1063/1.4817409)
  8. Yun, W. S., Han, S., Hong, S. C., Kim, I. G. & Lee, J. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305, doi:10.1103/PhysRevB.85.033305 (2012). (10.1103/PhysRevB.85.033305) / Phys. Rev. B by WS Yun (2012)
  9. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nano 6, 147–150, doi:10.1038/nnano.2010.279 (2011). (10.1038/nnano.2010.279) / Nat. Nano by B Radisavljevic (2011)
  10. Keyes, R. W. The Electrical Properties of Black Phosphorus. Phys. Rev. 92, 580–584, doi:10.1103/PhysRev.92.580 (1953). (10.1103/PhysRev.92.580) / Phys. Rev. by RW Keyes (1953)
  11. Takahashi, T. et al. Angle-resolved photoemission study of black phosphorus: Interlayer energy dispersion. Phys. Rev. B 33, 4324–4326 (1986). (10.1103/PhysRevB.33.4324) / Phys. Rev. B by T Takahashi (1986)
  12. Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599, doi:10.1103/PhysRevB.40.9595 (1989). (10.1103/PhysRevB.40.9595) / Phys. Rev. B by CA Vanderborgh (1989)
  13. Zhang, C. D. et al. Surface Structures of Black Phosphorus Investigated with Scanning Tunneling Microscopy. J. Phy. Chem. C 113, 18823–18826, doi:10.1021/jp907062n (2009). (10.1021/jp907062n) / J. Phy. Chem. C by CD Zhang (2009)
  14. Cartz, L., Srinivasa, S. R., Riedner, R. J., Jorgensen, J. D. & Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721, doi:10.1063/1.438523 (1979). (10.1063/1.438523) / J. Chem. Phys. by L Cartz (1979)
  15. Lei, W. et al. Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6, 219–224, doi:10.1016/j.nanoen.2014.04.004 (2014). (10.1016/j.nanoen.2014.04.004) / Nano Energy by W Lei (2014)
  16. Jiang, J.-W. & Park, H. S. Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, doi:10.1038/ncomms5727 (2014). (10.1038/ncomms5727)
  17. Low, T. et al. Plasmons and Screening in Monolayer and Multilayer Black Phosphorus. Phys. Rev. Lett 113, 106802, doi:10.1103/PhysRevLett.113.106802 (2014). (10.1103/PhysRevLett.113.106802) / Phys. Rev. Lett by T Low (2014)
  18. Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S., Christensen, N. E. & Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86, 035105, doi:10.1103/PhysRevB.86.035105 (2012). (10.1103/PhysRevB.86.035105) / Phys. Rev. B by S Appalakondaiah (2012)
  19. Du, Y., Ouyang, C., Shi, S. & Lei, M. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, doi:10.1063/1.3386509 (2010). (10.1063/1.3386509)
  20. Xiao, P., Fan, X.-L., Liu, L.-M. & Lau, W.-M. Band gap engineering of FeS2 under biaxial strain: a first principles study. Physical Chemistry Chemical Physics 16, 24466–24472, doi:10.1039/c4cp03453h (2014). (10.1039/c4cp03453h) / Physical Chemistry Chemical Physics by P Xiao (2014)
  21. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319, doi:10.1103/PhysRevB.89.235319 (2014). (10.1103/PhysRevB.89.235319) / Phys. Rev. B by V Tran (2014)
  22. Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89, 201408, doi:10.1103/PhysRevB.89.201408 (2014). (10.1103/PhysRevB.89.201408) / Phys. Rev. B by AN Rudenko (2014)
  23. Buscema, M. et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Letters 14, 3347–3352, doi:10.1021/nl5008085 (2014). (10.1021/nl5008085) / Nano Letters by M Buscema (2014)
  24. Park, C. M. & Sohn, H. J. Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Adv. Mater. 19, 2465–2468, doi:10.1002/adma.200602592 (2007). (10.1002/adma.200602592) / Adv. Mater. by CM Park (2007)
  25. Sun, L.-Q. et al. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries. J. Phys. hem. C 116, 14772–14779, doi:10.1021/jp302265n (2012). (10.1021/jp302265n) / J. Phys. hem. C by L-Q Sun (2012)
  26. Ma, X., Ning, G., Qi, C., Xu, C. & Gao, J. Phosphorus and Nitrogen Dual-Doped Few-Layered Porous Graphene: A High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl Mater Interfaces 6, 14415–14422, doi:10.1021/am503692g (2014). (10.1021/am503692g) / ACS Appl Mater Interfaces by X Ma (2014)
  27. Dai, J. & Zeng, X. C. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. J. Phys. Chem. Lett 5, 1289–1293, doi:10.1021/jz500409m (2014). (10.1021/jz500409m) / J. Phys. Chem. Lett by J Dai (2014)
  28. Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun 5, doi:10.1038/ncomms5651 (2014). (10.1038/ncomms5651)
  29. Fei, R. et al. Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene. Nano. Lett 14, 6393–6399, doi:10.1021/nl502865s (2014). (10.1021/nl502865s) / Nano. Lett by R Fei (2014)
  30. Ma, S.-Y., Liu, L.-M. & Wang, S.-Q. The microstructure, stability and elastic properties of 14H long-period stacking-ordered phase in Mg-Zn-Y alloys: a first-principles study. Journal of Materials Science 49, 737–748, doi:10.1007/s10853-013-7755-1 (2014). (10.1007/s10853-013-7755-1) / Journal of Materials Science by S-Y Ma (2014)
  31. Guo, H., Lu, N., Dai, J., Wu, X. & Zeng, X. C. Phosphorene Nanoribbons, Phosphorus Nanotubes and van der Waals Multilayers. J. Phys. Chem. C 118, 14051–14059, doi:10.1021/jp505257g (2014). (10.1021/jp505257g) / J. Phys. Chem. C by H Guo (2014)
  32. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett 112, 176801, doi:10.1103/PhysRevLett.112.176801 (2014). (10.1103/PhysRevLett.112.176801) / Phys. Rev. Lett by AS Rodin (2014)
  33. Fei, R. & Yang, L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano. Lett 14, 2884–2889, doi:10.1021/nl500935z (2014). (10.1021/nl500935z) / Nano. Lett by R Fei (2014)
  34. Gong, K., Zhang, L., Ji, W. & Guo, H. Electrical contacts to monolayer black phosphorus: A first-principles investigation. Phys. Rev. B 90, 125441, doi:10.1103/PhysRevB.90.125441 (2014). (10.1103/PhysRevB.90.125441) / Phys. Rev. B by K Gong (2014)
  35. Zhu, Z. & Tománek, D. Semiconducting Layered Blue Phosphorus: A Computational Study. Phys. Rev. Lett 112, 176802, doi:10.1103/PhysRevLett.112.176802 (2014). (10.1103/PhysRevLett.112.176802) / Phys. Rev. Lett by Z Zhu (2014)
  36. Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-Dimensional Mono-Elemental Semiconductor with Electronically Inactive Defects: The Case of Phosphorus. Nano. Lett 16, 6782–6786, doi:10.1021/nl5021393 (2014). (10.1021/nl5021393) / Nano. Lett by Y Liu (2014)
  37. Kim, G. et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano. Lett 13, 1834–1839, doi:10.1021/nl400559s (2013). (10.1021/nl400559s) / Nano. Lett by G Kim (2013)
  38. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical reviews 112, 6156–6214, doi:10.1021/cr3000412 (2012). (10.1021/cr3000412) / Chemical reviews by V Georgakilas (2012)
  39. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710, doi:10.1103/PhysRevB.54.1703 (1996). (10.1103/PhysRevB.54.1703) / Phys. Rev. B by S Goedecker (1996)
  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett by JP Perdew (1996)
  41. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799, doi:10.1002/jcc.20495 (2006). (10.1002/jcc.20495) / J. Comput. Chem. by S Grimme (2006)
  42. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192, doi:10.1103/PhysRevB.13.5188 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  43. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun 5, doi:10.1038/ncomms5475 (2014). (10.1038/ncomms5475)
Dates
Type When
Created 10 years, 2 months ago (June 2, 2015, 9:56 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:20 p.m.)
Indexed 1 week, 2 days ago (Aug. 20, 2025, 8:39 a.m.)
Issued 10 years, 2 months ago (June 2, 2015)
Published 10 years, 2 months ago (June 2, 2015)
Published Online 10 years, 2 months ago (June 2, 2015)
Funders 0

None

@article{Li_2015, title={Structures, stabilities and electronic properties of defects in monolayer black phosphorus}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep10848}, DOI={10.1038/srep10848}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Li, Xi-Bo and Guo, Pan and Cao, Teng-Fei and Liu, Hao and Lau, Woon-Ming and Liu, Li-Min}, year={2015}, month=jun }