Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractFor the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics.

Bibliography

Dong, Y., Wan, L., Cai, J., Fang, Q., Chi, Y., & Chen, G. (2015). Natural carbon-based dots from humic substances. Scientific Reports, 5(1).

Authors 6
  1. Yongqiang Dong (first)
  2. Lisi Wan (additional)
  3. Jianhua Cai (additional)
  4. Qingqing Fang (additional)
  5. Yuwu Chi (additional)
  6. Guonan Chen (additional)
References 43 Referenced 73
  1. Timothy, K. H. & Thomas, G. B. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortScience 45, 906–910 (2010). (10.21273/HORTSCI.45.6.906) / HortScience by KH Timothy (2010)
  2. Islam, K. M. S., Schuhmacher, A. & Gropp, J. M. Humic acid substances in animal agriculture. Pak. J. Nutr. 4, 126–134 (2005). (10.3923/pjn.2005.126.134) / Pak. J. Nutr. by KMS Islam (2005)
  3. Koivula, N. & Hänninen, K. Biodeterioration of cardboard-based liquid containers collected for fibre reuse. Chemosphere 38, 1873–1887 (1999). (10.1016/S0045-6535(98)00402-0) / Chemosphere by N Koivula (1999)
  4. Schmeide, K. et al. Uranium(VI) sorption onto phyllite and selected minerals in the presence of humic acid. Radiochim. Acta 88, 723–728 (2000). (10.1524/ract.2000.88.9-11.723) / Radiochim. Acta by K Schmeide (2000)
  5. Pacheco, M. L. & Havel, J. Capillary zone electrophoretic (CZE) study of uranium(VI) complexation with humic acids. J. Radioanal. Nucl. Chem. 248, 565–570 (2001). (10.1023/A:1010618628705) / J. Radioanal. Nucl. Chem. by ML Pacheco (2001)
  6. Verstraete, W. & Devliegher, W. Formation of non-bioavailable organic residues in soil: Perspectives for site remediation. Biodegradation 7, 471–485 (1996). (10.1007/BF00115294) / Biodegradation by W Verstraete (1996)
  7. Klöcking, R., Helbig, B., Schötz, G., Schacke, M. & Wutzler, P. Anti-HSV-1 activity of synthetic humic acid-like polymers derived from p-diphenolic starting compounds. Antivir. Chem. Chemother. 13, 241–249 (2002). (10.1177/095632020201300405) / Antivir. Chem. Chemother. by R Klöcking (2002)
  8. Stenson, A. C., Landing, W. M., Marshall, A. G. & Copper, W. T. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 74, 4397–4409 (2002). (10.1021/ac020019f) / Anal. Chem. by AC Stenson (2002)
  9. Stenson, A. C., Marshall, A. G. & Copper, W. T. Exact masses and chemical formulas of individual suwannee river fulvic acids from ultrahigh resolution ESI FT-ICR mass spectra. Anal. Chem. 75, 1275–1284 (2003). (10.1021/ac026106p) / Anal. Chem. by AC Stenson (2003)
  10. Kujawinski, E. B. et al. The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter. Org. Geochem. 33, 171–180 (2002). (10.1016/S0146-6380(01)00149-8) / Org. Geochem. by EB Kujawinski (2002)
  11. In Humic substances: structures, properties and uses (eds Davies, G. et al. ) Royal Society of chemistry 1998).
  12. Oglesby, R. T., Christman, R. F. & Driver, C. H. The biotransformation of lignin to humus facts and postulates. Adv. Appl. Microbiol. 9, 171–184 (1967). (10.1016/S0065-2164(08)70528-8) / Adv. Appl. Microbiol. by RT Oglesby (1967)
  13. Given, P. H. In Coal Science (eds Gorbaty, M. L. et al. ) Vol. 3, 63–252 Orlando Academic press 1984). (10.1016/B978-0-12-150703-9.50008-1) / Coal Science by PH Given (1984)
  14. Ye, R. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). (10.1038/ncomms3943) / Nat. Commun. by R Ye (2013)
  15. Dong, Y. et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6, 7410–7415 (2014). (10.1039/C4NR01482K) / Nanoscale by Y Dong (2014)
  16. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985). (10.1038/318162a0) / Nature by HW Kroto (1985)
  17. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). (10.1038/354056a0) / Nature by S Iijima (1991)
  18. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties and applications. Adv. Mater. 22, 3906–3924 (2010). (10.1002/adma.201001068) / Adv. Mater. by Y Zhu (2010)
  19. Baker, S. N. & Baker, G. A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem., Int. Ed. 49, 6726–6744 (2010). (10.1002/anie.200906623) / Angew. Chem., Int. Ed. by SN Baker (2010)
  20. Zhang, Z., Zhang, J., Chen, N. & Qu, L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012). (10.1039/c2ee22982j) / Energy Environ. Sci. by Z Zhang (2012)
  21. Zhu, S. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732–4740 (2012). (10.1002/adfm.201201499) / Adv. Funct. Mater. by S Zhu (2012)
  22. Dong, Y. et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 22, 8764–8766 (2012). (10.1039/c2jm30658a) / J. Mater. Chem. by Y Dong (2012)
  23. Yang, Y. T. et al. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308–11309 (2009). (10.1021/ja904843x) / J. Am. Chem. Soc. by YT Yang (2009)
  24. Dong, Y. et al. Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Anal. Chem. 84, 8378–8382 (2012). (10.1021/ac301945z) / Anal. Chem. by Y Dong (2012)
  25. Qu, Q., Zhu, A., Shao, X., Shi, G. & Tian, Y. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 48, 5473–5475 (2012). (10.1039/c2cc31000g) / Chem. Commun. by Q Qu (2012)
  26. Dong, Y., Tian, W., Ren, S., Dai, R., Chi, Y. & Chen, G. Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) Ions. ACS Appl. Mater. Interfaces 6, 1646–1651 (2014). (10.1021/am404552s) / ACS Appl. Mater. Interfaces by Y Dong (2014)
  27. Bai, J., Zhang, L., Liang, R. & Qiu, J. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem. Eur. J. 19, 3822–3826 (2013). (10.1002/chem.201204295) / Chem. Eur. J. by J Bai (2013)
  28. Yan, X., Cui, X., Li, B. & Li, L. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869–1873 (2010). (10.1021/nl101060h) / Nano Lett. by X Yan (2010)
  29. Dong, Y. et al. Blue Luminescent Graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012). (10.1016/j.carbon.2012.06.002) / Carbon by Y Dong (2012)
  30. Liu, R., Wu, D., Feng, X. & Müllen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221–15223 (2011). (10.1021/ja204953k) / J. Am. Chem. Soc. by R Liu (2011)
  31. Ponomarenko, L. A. et al. Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008). (10.1126/science.1154663) / Science by LA Ponomarenko (2008)
  32. Liu, F. et al. facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater. 25, 3657–3662 (2013). (10.1002/adma.201300233) / Adv. Mater. by F Liu (2013)
  33. Zhu, S. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732–4740 (2012). (10.1002/adfm.201201499) / Adv. Funct. Mater. by S Zhu (2012)
  34. Li, L. et al. A Facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22, 2971–2979 (2012). (10.1002/adfm.201200166) / Adv. Funct. Mater. by L Li (2012)
  35. Zheng, H. et al. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47, 10650–10652 (2011). (10.1039/c1cc14741b) / Chem. Commun. by H Zheng (2011)
  36. Zheng, L., Chi, Y., Dong, Y., Lin, J. & Wang, B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131, 4564–4565 (2009). (10.1021/ja809073f) / J. Am. Chem. Soc. by L Zheng (2009)
  37. Ding, Z. et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297 (2002). (10.1126/science.1069336) / Science by Z Ding (2002)
  38. Bae, Y., Myung, N. & Bard, A. J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 4, 1153–1161 (2004). (10.1021/nl049516x) / Nano Lett. by Y Bae (2004)
  39. Dong, Y. et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22, 5895–5899 (2010). (10.1021/cm1018844) / Chem. Mater. by Y Dong (2010)
  40. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996). (10.1126/science.273.5274.483) / Science by A Thess (1996)
  41. Krusic, P. J., Roe, D. C., Johnston, E., Morton, J. R. & Preston, K. F. EPR study of hindered internal rotation in alkyl-fullerene (C60) radicals. J. Phys. Chem. 97, 1736–1738 (1993). (10.1021/j100111a004) / J. Phys. Chem. by PJ Krusic (1993)
  42. Su, C. et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Commun. 3, 1298 (2012). (10.1038/ncomms2315) / Nature Commun. by C Su (2012)
  43. Rao, S. S., Stesmans, A., Kosynkin, D. V., Higginbotham, A. & Tour, J. M. Paramagnetic centers in graphene nanoribbons prepared from longitudinal unzipping of carbon nanotubes. New J. Phys. 13, 113004 (2011). (10.1088/1367-2630/13/11/113004) / New J. Phys. by SS Rao (2011)
Dates
Type When
Created 10 years, 3 months ago (May 6, 2015, 7:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:26 a.m.)
Indexed 1 week, 3 days ago (Aug. 19, 2025, 6:49 a.m.)
Issued 10 years, 3 months ago (May 6, 2015)
Published 10 years, 3 months ago (May 6, 2015)
Published Online 10 years, 3 months ago (May 6, 2015)
Funders 0

None

@article{Dong_2015, title={Natural carbon-based dots from humic substances}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep10037}, DOI={10.1038/srep10037}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Dong, Yongqiang and Wan, Lisi and Cai, Jianhua and Fang, Qingqing and Chi, Yuwu and Chen, Guonan}, year={2015}, month=may }