Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractWe have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices.

Bibliography

Xiao, J., Long, M., Zhang, X., Ouyang, J., Xu, H., & Gao, Y. (2015). Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets. Scientific Reports, 5(1).

Authors 6
  1. Jin Xiao (first)
  2. Mengqiu Long (additional)
  3. Xiaojiao Zhang (additional)
  4. Jun Ouyang (additional)
  5. Hui Xu (additional)
  6. Yongli Gao (additional)
References 53 Referenced 200
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nat. mater. by AK Geim (2007)
  2. Long, M. et al. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano 5, 2593–2600 (2011). (10.1021/nn102472s) / ACS Nano by M Long (2011)
  3. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012). (10.1038/nature11408) / Nature by MP Levendorf (2012)
  4. Tahir, M. & Schwingenschlogl, U. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013). (10.1038/srep01075) / Sci. Rep. by M Tahir (2013)
  5. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712(2012). (10.1038/nnano.2012.193) / Nat. Nanotech. by QH Wang (2012)
  6. Xiao, J. et al. Effects of Van der Waals interaction and electric field on the electronic structure of bilayer MoS2 . J. Phys.: Condens. Matter 26, 405302 (2014). / J. Phys.: Condens. Matter by J Xiao (2014)
  7. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372 (2014). (10.1038/nnano.2014.35) / Nat. Nanotech. by L Li (2014)
  8. Liu, H. et al. Phosphorous: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano. 8, 4033 (2014). (10.1021/nn501226z) / ACS Nano by H Liu (2014)
  9. Köpf, M. et al. Access and in situ growth of phosphorous-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014). (10.1016/j.jcrysgro.2014.07.029) / J. Cryst. Growth by M Köpf (2014)
  10. Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorous and its Raman characterization. Nano Res. 7, 853–859 (2014). (10.1007/s12274-014-0446-7) / Nano Res. by W Lu (2014)
  11. Fei R. & Yang, L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett. 14, 2884−2889 (2014). (10.1021/nl500935z) / Nano Lett. by R Fei (2014)
  12. Han, X. et al. Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorous Nanoribbons. Nano Lett. 14, 4607−4614 (2014). (10.1021/nl501658d) / Nano Lett. by X Han (2014)
  13. Wu, M., Qian, X. & Li, J. Tunable Exciton Funnel Using Moiré Superlattice in Twisted van der Waals Bilayer.Nano Lett. 14, 5350−5357 (2014). (10.1021/nl502414t) / Nano Lett. by M Wu (2014)
  14. Buscema, M. et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett. 14, 3347−3352(2014). (10.1021/nl5008085) / Nano Lett. by M Buscema (2014)
  15. Tran, V. et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014) (10.1103/PhysRevB.89.235319) / Phys. Rev. B by V Tran (2014)
  16. Tran, V. & Yang, L. Scaling laws for the band gap and optical response of phosphorous nanoribbons. Phys. Rev. B 89, 245407 (2014). (10.1103/PhysRevB.89.245407) / Phys. Rev. B by V Tran (2014)
  17. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. C. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B 90, 075429 (2014). (10.1103/PhysRevB.90.075429) / Phys. Rev. B by AS Rodin (2014)
  18. Peng, X., Wei, Q. & Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorous. Phys. Rev. B 90, 085402 (2014) (10.1103/PhysRevB.90.085402) / Phys. Rev. B by X Peng (2014)
  19. Lv, H. Y., Lu, W. J., Shao, D. F. & Sun, Y. P. Enhanced thermoelectric performance of phosphorous by strain-induced band convergence. Phys. Rev. B 90, 085433 (2014). (10.1103/PhysRevB.90.085433) / Phys. Rev. B by HY Lv (2014)
  20. Zhu, Z. & Tománek, D. Semiconducting Layered Blue Phosphorus: A Computational Study. Phys. Rev. Lett. 112, 176802 (2014). (10.1103/PhysRevLett.112.176802) / Phys. Rev. Lett. by Z Zhu (2014)
  21. Guan, J., Zhu, Z. & Tománek, D. Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorous: A Computational Study. Phys. Rev. Lett. 113, 046804 (2014). (10.1103/PhysRevLett.113.046804) / Phys. Rev. Lett. by J Guan (2014)
  22. Guo, H. et al. Phosphorous Nanoribbons, Phosphorus Nanotubes and van der Waals Multilayers. J. Phys. Chem. C 118, 14051−14059 (2014). (10.1021/jp505257g) / J. Phys. Chem. C by H Guo (2014)
  23. Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580 (1953). (10.1103/PhysRev.92.580) / Phys. Rev. by RW Keyes (1953)
  24. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853 (1963). (10.1063/1.1729699) / J. Appl. Phys. by D Warschauer (1963)
  25. Qiao, J. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). (10.1038/ncomms5475) / Nat. Commun. by J Qiao (2014)
  26. Liang, L. et al. Electronic Band gap and Edge Reconstruction in Phosphorene Materials. Nano Lett. 14, 6400−6406 (2014). (10.1021/nl502892t) / Nano Lett. by L Liang (2014)
  27. Wang, X. et al. Highly Anisotropic and Robust Exictions in Monolayer Black Phosphorus. arXiv:1411.1695.
  28. Akahama, Y., Endo, S. & Narita, S.-I. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 2148 (1983). (10.1143/JPSJ.52.2148) / J. Phys. Soc. Jpn. by Y Akahama (1983)
  29. Morita, A. Semiconducting Black Phosphorus. Appl. Phys. A: Mater. Sci. Process. 39, 227 (1986). (10.1007/BF00617267) / Appl. Phys. A: Mater. Sci. Process by A Morita (1986)
  30. Zhang, J. et al. Phosphorous nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014). (10.1038/srep06452) / Sci. Rep. by J Zhang (2014)
  31. Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorous and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). (10.1063/1.4885215) / Appl. Phys. Lett. by Q Wei (2014)
  32. Liu, H. et al. The Effect of Dielectric Capping on Few-Layer Phosphorous Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Dev. Lett. 35, 795–797 (2014). (10.1109/LED.2014.2323951) / IEEE Electron Dev. Lett. by H Liu (2014)
  33. Zhang, S. et al. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorous. ACS Nano 8, 9590–9596 (2014). (10.1021/nn503893j) / ACS Nano by S Zhang (2014)
  34. Deng, Y. et al. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. ACS Nano 8, 8292–8299 (2014). (10.1021/nn5027388) / ACS Nano by Y Deng (2014)
  35. Dai J. & Zeng, X. C. Bilayer Phosphorous: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. J. Phys. Chem. Lett. 5, 1289−1293 (2014). (10.1021/jz500409m) / J. Phys. Chem. Lett. by J Dai (2014)
  36. Kou, L., Frauenheim, T. & Chen, C. Phosphorous as a Superior Gas Sensor: Selective Adsorption and Distinct I−V Response. J. Phys. Chem. Lett. 5, 2675−2681 (2014). (10.1021/jz501188k) / J. Phys. Chem. Lett. by L Kou (2014)
  37. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett. 112, 176801 (2014). (10.1103/PhysRevLett.112.176801) / Phys. Rev. Lett. by AS Rodin (2014)
  38. Zhang, Y., et al. Ambipolar MoS2 Thin Flake Transistors. Nano Lett. 12, 1136−1140 (2012) (10.1021/nl2021575) / Nano Lett. by Y Zhang (2012)
  39. Shao, Z.-G., Ye, X.-S., Yang, L. & Wang, C.-L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712 (2013). (10.1063/1.4820526) / J. Appl. Phys. by Z-G Shao (2013)
  40. Ye, X.-S. et al. Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv. 4, 21216 (2014). (10.1039/C4RA01802H) / RSC Adv. by X-S Ye (2014)
  41. Radisavljevic, B. & Kis, A .Mobility engineering and a metal-insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  42. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). (10.1107/S0021889811038970) / J. Appl. Crystallogr. by K Momma (2011)
  43. Long, M.-Q. et al. Theoretical Predictions of Size-Dependent Carrier Mobility and Polarity in Graphene. J. Am. Chem. Soc. 131, 17728–17729 (2009). (10.1021/ja907528a) / J. Am. Chem. Soc. by M-Q Long (2009)
  44. Bruzzone, S. & Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 99, 222108 (2011). (10.1063/1.3665183) / Appl. Phys. Lett. by S Bruzzone (2011)
  45. Xu, B., et al. The effect of acoustic phonon scattering on the carrier mobility in the semiconducting zigzag single wall carbon nanotubes. Appl. Phys. Lett. 96, 183108 (2010). (10.1063/1.3427419) / Appl. Phys. Lett. by B Xu (2010)
  46. Wang, G. Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone-Wales defects. Phys. Chem. Chem. Phys. 13, 11939–11945 (2011). (10.1039/c1cp20541b) / Phys. Chem. Chem. Phys. by G Wang (2011)
  47. Xiao, J. Theoretical Prediction of electronic Structure and Carrier mobility in Single-walled MoS2 Nanotubes. Sci. Rep. 4, 4327 (2014). (10.1038/srep04327) / Sci. Rep. by J Xiao (2014)
  48. Xi, J. et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348–4369 (2012). (10.1039/c2nr30585b) / Nanoscale by J Xi (2012)
  49. Deng, W.-Q. & W. A. G. III . Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations. J. Phys. Chem. B 108, 8614–8621 (2004). (10.1021/jp0495848) / J. Phys. Chem. B by W-Q Deng (2004)
  50. Bardeen, J. & Shockley, W. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev. 80, 72−80 (1950). (10.1103/PhysRev.80.72) / Phys. Rev. by J Bardeen (1950)
  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868(1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke and Ernzerhof Reply. Phys. Rev. Lett. 80, 891 (1998). (10.1103/PhysRevLett.80.891) / Phys. Rev. Lett. by JP Perdew (1998)
Dates
Type When
Created 10 years, 2 months ago (June 2, 2015, 11:37 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:42 a.m.)
Indexed 2 days, 18 hours ago (Aug. 27, 2025, 12:04 p.m.)
Issued 10 years, 2 months ago (June 2, 2015)
Published 10 years, 2 months ago (June 2, 2015)
Published Online 10 years, 2 months ago (June 2, 2015)
Funders 0

None

@article{Xiao_2015, title={Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep09961}, DOI={10.1038/srep09961}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Xiao, Jin and Long, Mengqiu and Zhang, Xiaojiao and Ouyang, Jun and Xu, Hui and Gao, Yongli}, year={2015}, month=jun }