Abstract
AbstractWe have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices.
References
53
Referenced
200
-
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nat. mater. by AK Geim (2007) -
Long, M. et al. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano 5, 2593–2600 (2011).
(
10.1021/nn102472s
) / ACS Nano by M Long (2011) -
Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).
(
10.1038/nature11408
) / Nature by MP Levendorf (2012) -
Tahir, M. & Schwingenschlogl, U. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013).
(
10.1038/srep01075
) / Sci. Rep. by M Tahir (2013) -
Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712(2012).
(
10.1038/nnano.2012.193
) / Nat. Nanotech. by QH Wang (2012) - Xiao, J. et al. Effects of Van der Waals interaction and electric field on the electronic structure of bilayer MoS2 . J. Phys.: Condens. Matter 26, 405302 (2014). / J. Phys.: Condens. Matter by J Xiao (2014)
-
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372 (2014).
(
10.1038/nnano.2014.35
) / Nat. Nanotech. by L Li (2014) -
Liu, H. et al. Phosphorous: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano. 8, 4033 (2014).
(
10.1021/nn501226z
) / ACS Nano by H Liu (2014) -
Köpf, M. et al. Access and in situ growth of phosphorous-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014).
(
10.1016/j.jcrysgro.2014.07.029
) / J. Cryst. Growth by M Köpf (2014) -
Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorous and its Raman characterization. Nano Res. 7, 853–859 (2014).
(
10.1007/s12274-014-0446-7
) / Nano Res. by W Lu (2014) -
Fei R. & Yang, L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett. 14, 2884−2889 (2014).
(
10.1021/nl500935z
) / Nano Lett. by R Fei (2014) -
Han, X. et al. Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorous Nanoribbons. Nano Lett. 14, 4607−4614 (2014).
(
10.1021/nl501658d
) / Nano Lett. by X Han (2014) -
Wu, M., Qian, X. & Li, J. Tunable Exciton Funnel Using Moiré Superlattice in Twisted van der Waals Bilayer.Nano Lett. 14, 5350−5357 (2014).
(
10.1021/nl502414t
) / Nano Lett. by M Wu (2014) -
Buscema, M. et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett. 14, 3347−3352(2014).
(
10.1021/nl5008085
) / Nano Lett. by M Buscema (2014) -
Tran, V. et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)
(
10.1103/PhysRevB.89.235319
) / Phys. Rev. B by V Tran (2014) -
Tran, V. & Yang, L. Scaling laws for the band gap and optical response of phosphorous nanoribbons. Phys. Rev. B 89, 245407 (2014).
(
10.1103/PhysRevB.89.245407
) / Phys. Rev. B by V Tran (2014) -
Rodin, A. S., Carvalho, A. & Castro Neto, A. H. C. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B 90, 075429 (2014).
(
10.1103/PhysRevB.90.075429
) / Phys. Rev. B by AS Rodin (2014) -
Peng, X., Wei, Q. & Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorous. Phys. Rev. B 90, 085402 (2014)
(
10.1103/PhysRevB.90.085402
) / Phys. Rev. B by X Peng (2014) -
Lv, H. Y., Lu, W. J., Shao, D. F. & Sun, Y. P. Enhanced thermoelectric performance of phosphorous by strain-induced band convergence. Phys. Rev. B 90, 085433 (2014).
(
10.1103/PhysRevB.90.085433
) / Phys. Rev. B by HY Lv (2014) -
Zhu, Z. & Tománek, D. Semiconducting Layered Blue Phosphorus: A Computational Study. Phys. Rev. Lett. 112, 176802 (2014).
(
10.1103/PhysRevLett.112.176802
) / Phys. Rev. Lett. by Z Zhu (2014) -
Guan, J., Zhu, Z. & Tománek, D. Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorous: A Computational Study. Phys. Rev. Lett. 113, 046804 (2014).
(
10.1103/PhysRevLett.113.046804
) / Phys. Rev. Lett. by J Guan (2014) -
Guo, H. et al. Phosphorous Nanoribbons, Phosphorus Nanotubes and van der Waals Multilayers. J. Phys. Chem. C 118, 14051−14059 (2014).
(
10.1021/jp505257g
) / J. Phys. Chem. C by H Guo (2014) -
Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580 (1953).
(
10.1103/PhysRev.92.580
) / Phys. Rev. by RW Keyes (1953) -
Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853 (1963).
(
10.1063/1.1729699
) / J. Appl. Phys. by D Warschauer (1963) -
Qiao, J. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).
(
10.1038/ncomms5475
) / Nat. Commun. by J Qiao (2014) -
Liang, L. et al. Electronic Band gap and Edge Reconstruction in Phosphorene Materials. Nano Lett. 14, 6400−6406 (2014).
(
10.1021/nl502892t
) / Nano Lett. by L Liang (2014) - Wang, X. et al. Highly Anisotropic and Robust Exictions in Monolayer Black Phosphorus. arXiv:1411.1695.
-
Akahama, Y., Endo, S. & Narita, S.-I. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 2148 (1983).
(
10.1143/JPSJ.52.2148
) / J. Phys. Soc. Jpn. by Y Akahama (1983) -
Morita, A. Semiconducting Black Phosphorus. Appl. Phys. A: Mater. Sci. Process. 39, 227 (1986).
(
10.1007/BF00617267
) / Appl. Phys. A: Mater. Sci. Process by A Morita (1986) -
Zhang, J. et al. Phosphorous nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).
(
10.1038/srep06452
) / Sci. Rep. by J Zhang (2014) -
Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorous and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).
(
10.1063/1.4885215
) / Appl. Phys. Lett. by Q Wei (2014) -
Liu, H. et al. The Effect of Dielectric Capping on Few-Layer Phosphorous Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Dev. Lett. 35, 795–797 (2014).
(
10.1109/LED.2014.2323951
) / IEEE Electron Dev. Lett. by H Liu (2014) -
Zhang, S. et al. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorous. ACS Nano 8, 9590–9596 (2014).
(
10.1021/nn503893j
) / ACS Nano by S Zhang (2014) -
Deng, Y. et al. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. ACS Nano 8, 8292–8299 (2014).
(
10.1021/nn5027388
) / ACS Nano by Y Deng (2014) -
Dai J. & Zeng, X. C. Bilayer Phosphorous: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. J. Phys. Chem. Lett. 5, 1289−1293 (2014).
(
10.1021/jz500409m
) / J. Phys. Chem. Lett. by J Dai (2014) -
Kou, L., Frauenheim, T. & Chen, C. Phosphorous as a Superior Gas Sensor: Selective Adsorption and Distinct I−V Response. J. Phys. Chem. Lett. 5, 2675−2681 (2014).
(
10.1021/jz501188k
) / J. Phys. Chem. Lett. by L Kou (2014) -
Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett. 112, 176801 (2014).
(
10.1103/PhysRevLett.112.176801
) / Phys. Rev. Lett. by AS Rodin (2014) -
Zhang, Y., et al. Ambipolar MoS2 Thin Flake Transistors. Nano Lett. 12, 1136−1140 (2012)
(
10.1021/nl2021575
) / Nano Lett. by Y Zhang (2012) -
Shao, Z.-G., Ye, X.-S., Yang, L. & Wang, C.-L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712 (2013).
(
10.1063/1.4820526
) / J. Appl. Phys. by Z-G Shao (2013) -
Ye, X.-S. et al. Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv. 4, 21216 (2014).
(
10.1039/C4RA01802H
) / RSC Adv. by X-S Ye (2014) -
Radisavljevic, B. & Kis, A .Mobility engineering and a metal-insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).
(
10.1038/nmat3687
) / Nat. Mater. by B Radisavljevic (2013) -
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
(
10.1107/S0021889811038970
) / J. Appl. Crystallogr. by K Momma (2011) -
Long, M.-Q. et al. Theoretical Predictions of Size-Dependent Carrier Mobility and Polarity in Graphene. J. Am. Chem. Soc. 131, 17728–17729 (2009).
(
10.1021/ja907528a
) / J. Am. Chem. Soc. by M-Q Long (2009) -
Bruzzone, S. & Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 99, 222108 (2011).
(
10.1063/1.3665183
) / Appl. Phys. Lett. by S Bruzzone (2011) -
Xu, B., et al. The effect of acoustic phonon scattering on the carrier mobility in the semiconducting zigzag single wall carbon nanotubes. Appl. Phys. Lett. 96, 183108 (2010).
(
10.1063/1.3427419
) / Appl. Phys. Lett. by B Xu (2010) -
Wang, G. Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone-Wales defects. Phys. Chem. Chem. Phys. 13, 11939–11945 (2011).
(
10.1039/c1cp20541b
) / Phys. Chem. Chem. Phys. by G Wang (2011) -
Xiao, J. Theoretical Prediction of electronic Structure and Carrier mobility in Single-walled MoS2 Nanotubes. Sci. Rep. 4, 4327 (2014).
(
10.1038/srep04327
) / Sci. Rep. by J Xiao (2014) -
Xi, J. et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348–4369 (2012).
(
10.1039/c2nr30585b
) / Nanoscale by J Xi (2012) -
Deng, W.-Q. & W. A. G. III . Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations. J. Phys. Chem. B 108, 8614–8621 (2004).
(
10.1021/jp0495848
) / J. Phys. Chem. B by W-Q Deng (2004) -
Bardeen, J. & Shockley, W. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev. 80, 72−80 (1950).
(
10.1103/PhysRev.80.72
) / Phys. Rev. by J Bardeen (1950) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput. Mater. Sci. by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868(1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke and Ernzerhof Reply. Phys. Rev. Lett. 80, 891 (1998).
(
10.1103/PhysRevLett.80.891
) / Phys. Rev. Lett. by JP Perdew (1998)
Dates
Type | When |
---|---|
Created | 10 years, 2 months ago (June 2, 2015, 11:37 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 8:42 a.m.) |
Indexed | 2 days, 18 hours ago (Aug. 27, 2025, 12:04 p.m.) |
Issued | 10 years, 2 months ago (June 2, 2015) |
Published | 10 years, 2 months ago (June 2, 2015) |
Published Online | 10 years, 2 months ago (June 2, 2015) |
@article{Xiao_2015, title={Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets}, volume={5}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep09961}, DOI={10.1038/srep09961}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Xiao, Jin and Long, Mengqiu and Zhang, Xiaojiao and Ouyang, Jun and Xu, Hui and Gao, Yongli}, year={2015}, month=jun }