Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThe freezing of aqueous solutions and reciprocal distribution of ice and a freeze-concentrated solution (FCS) are poorly understood in spite of their importance in fields ranging from biotechnology and life sciences to geophysics and climate change. Using an optical cryo-miscroscope and differential scanning calorimetry, we demonstrate that upon cooling of citric acid and sucrose solutions a fast freezing process results in a continuous ice framework (IF) and two freeze-concentrated solution regions of different concentrations, FCS1 and FCS2. The FCS1 is maximally freeze-concentrated and interweaves with IF. The less concentrated FCS2 envelops the entire IF/FCS1. We find that upon further cooling, the FCS1 transforms to glass, whereas the slow freezing of FCS2 continues until it is terminated by a FCS2-glass transition. We observe the resumed slow freezing of FCS2 upon subsequent warming. The net thermal effect of the resumed freezing and a reverse glass-FCS1 transition produces the Ttr2-transition which before has only been observed upon warming of frozen hydrocarbon solutions and which nature has remained misunderstood for decades.

Bibliography

Bogdan, A., Molina, M. J., Tenhu, H., Bertel, E., Bogdan, N., & Loerting, T. (2014). Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions. Scientific Reports, 4(1).

Authors 6
  1. Anatoli Bogdan (first)
  2. Mario J. Molina (additional)
  3. Heikki Tenhu (additional)
  4. Erminald Bertel (additional)
  5. Natalia Bogdan (additional)
  6. Thomas Loerting (additional)
References 48 Referenced 37
  1. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford University Press, Oxford, 2006).
  2. Pikal, M. J., Rambhatla, S. & Ramot, R. The impact of the freezing stage in lyophilization: Effects of the ice nucleation temperature on process design and product quality. Amer. Pharm. Rev. 5, 48–52 (2002). / Amer. Pharm. Rev. by MJ Pikal (2002)
  3. Patapoff, T. W. & Overcashier, D. E. The importance of freezing on lyophilization cycle development. BioPharm 15, 16–21 (2002). / BioPharm by TW Patapoff (2002)
  4. Tang, X. C. & Pikal, M. J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 21, 191–200 (2004). (10.1023/B:PHAM.0000016234.73023.75) / Pharm. Res. by XC Tang (2004)
  5. Singh, S. K., Kolhe, P., Wang, W. & Nema, S. Large-scale freezing of biologics: A practitioner's review, part one: Fundamental aspects. BioProcess International 7, 32–44 (2009). / BioProcess International by SK Singh (2009)
  6. Pikal, M. J. [Freeze drying]. Encyclopedia of Pharmaceutical Technology [Swarbrick J., & Boylan J. C. (eds.)] [1299–1326] (Marcel Dekker, New York, 2002).
  7. Franks, F. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45, 221–229 (1998). (10.1016/S0939-6411(98)00004-6) / Eur. J. Pharm. Biopharm. by F Franks (1998)
  8. Franks, F. Solid aqueous solutions. Pure & Appl. Chem. 65, 2527–2537 (1993). (10.1351/pac199365122527) / Pure & Appl. Chem. by F Franks (1993)
  9. Goff, H. D., Verespej, E. & Jermann, D. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim. Acta 399, 43–55 (2003). (10.1016/S0040-6031(02)00399-4) / Thermochim. Acta by HD Goff (2003)
  10. Levine, H. & Slade, L. Thermomechanical properties of small-carbohydrate-water glasses and ‘rubbers’. J. Chem. Soc., Faraday Trans. 84, 2619–2633 (1988). (10.1039/f19888402619) / J. Chem. Soc., Faraday Trans. by H Levine (1988)
  11. Ablett, S., Izzard, M. J. & Lillford, P. J. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J. Chem. Soc. Faraday Trans. 88, 789–794 (1992). (10.1039/ft9928800789) / J. Chem. Soc. Faraday Trans. by S Ablett (1992)
  12. MacKenzie, A. P. Non-equilibrium freezing behavior of aqueous systems. Phil. Trans. R. Soc. Lond. 278, 167–189 (1977). (10.1098/rstb.1977.0036) / Phil. Trans. R. Soc. Lond. by AP MacKenzie (1977)
  13. Bogdan, A. & Loerting, T. Impact of substrate, aging and size on the two freezing events of (NH4)2SO4/H2O droplets. J. Phys. Chem. C 115, 10682–10693 (2011). (10.1021/jp2007396) / J. Phys. Chem. C by A Bogdan (2011)
  14. Bogdan, A. Reversible formation of glassy water in slowly cooling diluted drops. J. Phys. Chem. B 110, 12205–12206 (2006). (10.1021/jp062464a) / J. Phys. Chem. B by A Bogdan (2006)
  15. Price, B. P., Rohde, R. A. & Bay, R. C. Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences 6, 479–486 (2009). (10.5194/bg-6-479-2009) / Biogeosciences by BP Price (2009)
  16. Rempel, A. W. Hydromechanical processes in freezing soils. Vadose Zone J. 11, 10.2136/vzj2012.0045 (2012). (10.2136/vzj2012.0045)
  17. Barnes, P. R. F. & Wolff, E. W. Distribution of soluble impurities in cold glacial ice. J. Glaciol. 50, 311–324 (2004). (10.3189/172756504781829918) / J. Glaciol. by PRF Barnes (2004)
  18. Rohatgi, P. K. & Adams, C. M. Jr. Ice-brine dendritic aggregation formed on freezing of aqueous solutions. J. Glaciol. 6, 663–679 (1967). (10.3189/S0022143000019936) / J. Glaciol. by PK Rohatgi (1967)
  19. Golden, K. M. Brine percolation and the transport properties of sea ice. Ann. Glaciol. 33, 28–36 (2001). (10.3189/172756401781818329) / Ann. Glaciol. by KM Golden (2001)
  20. Thomas, D. N. et al. Dissolved organic matter in Antarctic sea ice. Ann. Glaciol. 33, 297–303 (2001). (10.3189/172756401781818338) / Ann. Glaciol. by DN Thomas (2001)
  21. Bogdan, A., Molina, M. J., Kulmala, M., Tenhu, H. & Loerting, T. Solution coating around ice particles of incipient cirrus clouds. Proc. Natl. Acad. Sci. USA 11, E2439 (2013). (10.1073/pnas.1304471110) / Proc. Natl. Acad. Sci. USA by A Bogdan (2013)
  22. Takenaka, N. et al. Acceleration of ammonium nitrate denitrification by freezing: Determination of activation energy from the temperature of maximum reaction rate. J. Phys. Chem. C 115, 14446–14451 (2011). (10.1021/jp2093466) / J. Phys. Chem. C by N Takenaka (2011)
  23. Bogdan, A., Molina, M. J., Tenhu, H., Mayer, E. & Loerting, T. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nature Chem. 2, 197–201 (2010). (10.1038/nchem.540) / Nature Chem. by A Bogdan (2010)
  24. Pearce, R. S. Plant freezing and damage. Ann. Bot. 87, 417–424 (2001). (10.1006/anbo.2000.1352) / Ann. Bot. by RS Pearce (2001)
  25. Bischof, J. C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu. Rev. Biomed. Eng. 2, 257–288 (2000). (10.1146/annurev.bioeng.2.1.257) / Annu. Rev. Biomed. Eng. by JC Bischof (2000)
  26. Rich, A. et al. Freezing desalination of sea water in a static layer crystallizer. Desalin. Water Treat. 13, 120–127 (2010). (10.5004/dwt.2010.983) / Desalin. Water Treat. by A Rich (2010)
  27. Van der Ham, F., Witkamp, G. J., de Graauw, J. & van Rosmalen, G. M. Eutectic freeze crystallization: Application to process streams and waste water purification. Chem. Eng. Process. 37, 207–213 (1998). (10.1016/S0255-2701(97)00055-X) / Chem. Eng. Process. by F Van der Ham (1998)
  28. Le Meste, M., Champion, D., Roudaut, G., Blond, G. & Simatos, D. Glass transition and food technology: A critical appraisal. J. Food Sci. 67, 2444–2458 (2002). (10.1111/j.1365-2621.2002.tb08758.x) / J. Food Sci. by M Le Meste (2002)
  29. Goff, H. D. The use of thermal analysis in the development of a better understanding of frozen food stability. Pure & Appl. Chem. 67, 1801–1808 (1995). (10.1351/pac199567111801) / Pure & Appl. Chem. by HD Goff (1995)
  30. Izzard, M. J., Ablett, S., Lillford, P. J., Hill, V. L. & Groves, I. F. A modulated differential scanning calorimetric study: Glass transitions occurring in sucrose solutions. J. Therm. Anal. 47, 1407–1418 (1996). (10.1007/BF01992836) / J. Therm. Anal. by MJ Izzard (1996)
  31. Inoue, C. & Suzuki, T. Enthalpy relaxation of freeze concentrated sucrose-water glass. Cryobiology 52, 83–89 (2006). (10.1016/j.cryobiol.2005.10.004) / Cryobiology by C Inoue (2006)
  32. Bhatnagar, B. S., Bogner, R. H. & Pikal, M. J. Protein stability during freezing: Separation of stresses and mechanisms of protein stabilization. Pharm. Develop. Technol. 12, 505–523 (2007). (10.1080/10837450701481157) / Pharm. Develop. Technol. by BS Bhatnagar (2007)
  33. Searles, J. A., Carpenter, J. F. & Randolph, T. W. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity and determine Tg' in pharmaceutical lyophilization. J. Pharm. Sci. 90, 872–887 (2001). (10.1002/jps.1040) / J. Pharm. Sci. by JA Searles (2001)
  34. Kasper, J. C. & Friess, W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 78, 248–263 (2011). (10.1016/j.ejpb.2011.03.010) / Eur. J. Pharm. Biopharm. by JC Kasper (2011)
  35. Searles, J. A., Carpenter, J. F. & Randolph, T. W. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J. Pharm. Sci. 90, 860–871 (2001). (10.1002/jps.1039) / J. Pharm. Sci. by JA Searles (2001)
  36. Shalaev, E. & Franks, F. [Solid-liquid state diagram in pharmaceutical lyophilization: Crystallization of Solutes]. Amorphous Food and Pharmaceutical Systems [Levine H. (ed.)] [200–215] (Royal Society of Chemistry, Cambridge, 2002).
  37. Konstantinidis, A. K., Kuu, W., Otten, L., Nail, S. L. & Sever, R. R. Controlled nucleation in freeze-drying: Effects on pore size in the dried product layer, mass transfer resistence and primary drying rate. J. Pharm. Sci. 100, 3453–3470 (2011). (10.1002/jps.22561) / J. Pharm. Sci. by AK Konstantinidis (2011)
  38. Chang, L. et al. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim. Acta 444, 141–147 (2006). (10.1016/j.tca.2006.03.006) / Thermochim. Acta by L Chang (2006)
  39. Shalaev, E. Y. & Franks, F. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. J. Chem. Soc. Faraday Trans. 91, 1511–1517 (1995). (10.1039/ft9959101511) / J. Chem. Soc. Faraday Trans. by EY Shalaev (1995)
  40. Pikal, M. J. & Shah, S. R. The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase. Int. J. Pharmaceut. 62, 165–186 (1990). (10.1016/0378-5173(90)90231-R) / Int. J. Pharmaceut. by MJ Pikal (1990)
  41. Fonseca, F., Passot, S., Cunin, O. & Marin, M. Collapse temperature of freeze-dried lactobacillus bulgaricus suspensions and protective media. Biotechnol. Prog. 20, 229–238 (2004). (10.1021/bp034136n) / Biotechnol. Prog. by F Fonseca (2004)
  42. Diller, K. R. Bioheat and mass transfer as viewed through a microscope. J. Biomech. Ing. 127, 67–84 (2005). (10.1115/1.1835354) / J. Biomech. Ing. by KR Diller (2005)
  43. Lu, Q. & Zografi, G. Properties of citric acid at the glass transition. J. Pharm. Sci. 86, 1374–1378 (1997). (10.1021/js970157y) / J. Pharm. Sci. by Q Lu (1997)
  44. Vijayarajkumar, P., Choudhary, R. K. & Narne, R. Efavirenz loaded novel citric acid dendritic architecture for increased solubility and sustained delivery. J. Pharm. Drug. Deliv. Res. 1, 1–5 (2012). (10.7243/2050-120X-1-1) / J. Pharm. Drug. Deliv. Res. by P Vijayarajkumar (2012)
  45. Yang, J., Webb, A. R. & Ameer, G. A. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16, 511–516 (2004). (10.1002/adma.200306264) / Adv. Mater. by J Yang (2004)
  46. Höhne, G., Hemminger, W. & Flammershain, H.-J. Differential Scanning Calorimetry (Springer, Berlin, 1995). (10.1007/978-3-662-03302-9)
  47. Gordon, M. & Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J. Appl. Chem. 2, 493–500 (1952). (10.1002/jctb.5010020901) / J. Appl. Chem. by M Gordon (1952)
  48. Katkov, I. I. & Levine, F. Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology 49, 62–82 (2004). (10.1016/j.cryobiol.2004.05.004) / Cryobiology by II Katkov (2004)
Dates
Type When
Created 10 years, 8 months ago (Dec. 10, 2014, 5:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 12:48 a.m.)
Indexed 1 month, 2 weeks ago (July 16, 2025, 8:17 a.m.)
Issued 10 years, 8 months ago (Dec. 10, 2014)
Published 10 years, 8 months ago (Dec. 10, 2014)
Published Online 10 years, 8 months ago (Dec. 10, 2014)
Funders 0

None

@article{Bogdan_2014, title={Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep07414}, DOI={10.1038/srep07414}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Bogdan, Anatoli and Molina, Mario J. and Tenhu, Heikki and Bertel, Erminald and Bogdan, Natalia and Loerting, Thomas}, year={2014}, month=dec }