Abstract
AbstractThe freezing of aqueous solutions and reciprocal distribution of ice and a freeze-concentrated solution (FCS) are poorly understood in spite of their importance in fields ranging from biotechnology and life sciences to geophysics and climate change. Using an optical cryo-miscroscope and differential scanning calorimetry, we demonstrate that upon cooling of citric acid and sucrose solutions a fast freezing process results in a continuous ice framework (IF) and two freeze-concentrated solution regions of different concentrations, FCS1 and FCS2. The FCS1 is maximally freeze-concentrated and interweaves with IF. The less concentrated FCS2 envelops the entire IF/FCS1. We find that upon further cooling, the FCS1 transforms to glass, whereas the slow freezing of FCS2 continues until it is terminated by a FCS2-glass transition. We observe the resumed slow freezing of FCS2 upon subsequent warming. The net thermal effect of the resumed freezing and a reverse glass-FCS1 transition produces the Ttr2-transition which before has only been observed upon warming of frozen hydrocarbon solutions and which nature has remained misunderstood for decades.
References
48
Referenced
37
- Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford University Press, Oxford, 2006).
- Pikal, M. J., Rambhatla, S. & Ramot, R. The impact of the freezing stage in lyophilization: Effects of the ice nucleation temperature on process design and product quality. Amer. Pharm. Rev. 5, 48–52 (2002). / Amer. Pharm. Rev. by MJ Pikal (2002)
- Patapoff, T. W. & Overcashier, D. E. The importance of freezing on lyophilization cycle development. BioPharm 15, 16–21 (2002). / BioPharm by TW Patapoff (2002)
-
Tang, X. C. & Pikal, M. J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 21, 191–200 (2004).
(
10.1023/B:PHAM.0000016234.73023.75
) / Pharm. Res. by XC Tang (2004) - Singh, S. K., Kolhe, P., Wang, W. & Nema, S. Large-scale freezing of biologics: A practitioner's review, part one: Fundamental aspects. BioProcess International 7, 32–44 (2009). / BioProcess International by SK Singh (2009)
- Pikal, M. J. [Freeze drying]. Encyclopedia of Pharmaceutical Technology [Swarbrick J., & Boylan J. C. (eds.)] [1299–1326] (Marcel Dekker, New York, 2002).
-
Franks, F. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45, 221–229 (1998).
(
10.1016/S0939-6411(98)00004-6
) / Eur. J. Pharm. Biopharm. by F Franks (1998) -
Franks, F. Solid aqueous solutions. Pure & Appl. Chem. 65, 2527–2537 (1993).
(
10.1351/pac199365122527
) / Pure & Appl. Chem. by F Franks (1993) -
Goff, H. D., Verespej, E. & Jermann, D. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim. Acta 399, 43–55 (2003).
(
10.1016/S0040-6031(02)00399-4
) / Thermochim. Acta by HD Goff (2003) -
Levine, H. & Slade, L. Thermomechanical properties of small-carbohydrate-water glasses and ‘rubbers’. J. Chem. Soc., Faraday Trans. 84, 2619–2633 (1988).
(
10.1039/f19888402619
) / J. Chem. Soc., Faraday Trans. by H Levine (1988) -
Ablett, S., Izzard, M. J. & Lillford, P. J. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J. Chem. Soc. Faraday Trans. 88, 789–794 (1992).
(
10.1039/ft9928800789
) / J. Chem. Soc. Faraday Trans. by S Ablett (1992) -
MacKenzie, A. P. Non-equilibrium freezing behavior of aqueous systems. Phil. Trans. R. Soc. Lond. 278, 167–189 (1977).
(
10.1098/rstb.1977.0036
) / Phil. Trans. R. Soc. Lond. by AP MacKenzie (1977) -
Bogdan, A. & Loerting, T. Impact of substrate, aging and size on the two freezing events of (NH4)2SO4/H2O droplets. J. Phys. Chem. C 115, 10682–10693 (2011).
(
10.1021/jp2007396
) / J. Phys. Chem. C by A Bogdan (2011) -
Bogdan, A. Reversible formation of glassy water in slowly cooling diluted drops. J. Phys. Chem. B 110, 12205–12206 (2006).
(
10.1021/jp062464a
) / J. Phys. Chem. B by A Bogdan (2006) -
Price, B. P., Rohde, R. A. & Bay, R. C. Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences 6, 479–486 (2009).
(
10.5194/bg-6-479-2009
) / Biogeosciences by BP Price (2009) -
Rempel, A. W. Hydromechanical processes in freezing soils. Vadose Zone J. 11, 10.2136/vzj2012.0045 (2012).
(
10.2136/vzj2012.0045
) -
Barnes, P. R. F. & Wolff, E. W. Distribution of soluble impurities in cold glacial ice. J. Glaciol. 50, 311–324 (2004).
(
10.3189/172756504781829918
) / J. Glaciol. by PRF Barnes (2004) -
Rohatgi, P. K. & Adams, C. M. Jr. Ice-brine dendritic aggregation formed on freezing of aqueous solutions. J. Glaciol. 6, 663–679 (1967).
(
10.3189/S0022143000019936
) / J. Glaciol. by PK Rohatgi (1967) -
Golden, K. M. Brine percolation and the transport properties of sea ice. Ann. Glaciol. 33, 28–36 (2001).
(
10.3189/172756401781818329
) / Ann. Glaciol. by KM Golden (2001) -
Thomas, D. N. et al. Dissolved organic matter in Antarctic sea ice. Ann. Glaciol. 33, 297–303 (2001).
(
10.3189/172756401781818338
) / Ann. Glaciol. by DN Thomas (2001) -
Bogdan, A., Molina, M. J., Kulmala, M., Tenhu, H. & Loerting, T. Solution coating around ice particles of incipient cirrus clouds. Proc. Natl. Acad. Sci. USA 11, E2439 (2013).
(
10.1073/pnas.1304471110
) / Proc. Natl. Acad. Sci. USA by A Bogdan (2013) -
Takenaka, N. et al. Acceleration of ammonium nitrate denitrification by freezing: Determination of activation energy from the temperature of maximum reaction rate. J. Phys. Chem. C 115, 14446–14451 (2011).
(
10.1021/jp2093466
) / J. Phys. Chem. C by N Takenaka (2011) -
Bogdan, A., Molina, M. J., Tenhu, H., Mayer, E. & Loerting, T. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nature Chem. 2, 197–201 (2010).
(
10.1038/nchem.540
) / Nature Chem. by A Bogdan (2010) -
Pearce, R. S. Plant freezing and damage. Ann. Bot. 87, 417–424 (2001).
(
10.1006/anbo.2000.1352
) / Ann. Bot. by RS Pearce (2001) -
Bischof, J. C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu. Rev. Biomed. Eng. 2, 257–288 (2000).
(
10.1146/annurev.bioeng.2.1.257
) / Annu. Rev. Biomed. Eng. by JC Bischof (2000) -
Rich, A. et al. Freezing desalination of sea water in a static layer crystallizer. Desalin. Water Treat. 13, 120–127 (2010).
(
10.5004/dwt.2010.983
) / Desalin. Water Treat. by A Rich (2010) -
Van der Ham, F., Witkamp, G. J., de Graauw, J. & van Rosmalen, G. M. Eutectic freeze crystallization: Application to process streams and waste water purification. Chem. Eng. Process. 37, 207–213 (1998).
(
10.1016/S0255-2701(97)00055-X
) / Chem. Eng. Process. by F Van der Ham (1998) -
Le Meste, M., Champion, D., Roudaut, G., Blond, G. & Simatos, D. Glass transition and food technology: A critical appraisal. J. Food Sci. 67, 2444–2458 (2002).
(
10.1111/j.1365-2621.2002.tb08758.x
) / J. Food Sci. by M Le Meste (2002) -
Goff, H. D. The use of thermal analysis in the development of a better understanding of frozen food stability. Pure & Appl. Chem. 67, 1801–1808 (1995).
(
10.1351/pac199567111801
) / Pure & Appl. Chem. by HD Goff (1995) -
Izzard, M. J., Ablett, S., Lillford, P. J., Hill, V. L. & Groves, I. F. A modulated differential scanning calorimetric study: Glass transitions occurring in sucrose solutions. J. Therm. Anal. 47, 1407–1418 (1996).
(
10.1007/BF01992836
) / J. Therm. Anal. by MJ Izzard (1996) -
Inoue, C. & Suzuki, T. Enthalpy relaxation of freeze concentrated sucrose-water glass. Cryobiology 52, 83–89 (2006).
(
10.1016/j.cryobiol.2005.10.004
) / Cryobiology by C Inoue (2006) -
Bhatnagar, B. S., Bogner, R. H. & Pikal, M. J. Protein stability during freezing: Separation of stresses and mechanisms of protein stabilization. Pharm. Develop. Technol. 12, 505–523 (2007).
(
10.1080/10837450701481157
) / Pharm. Develop. Technol. by BS Bhatnagar (2007) -
Searles, J. A., Carpenter, J. F. & Randolph, T. W. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity and determine Tg' in pharmaceutical lyophilization. J. Pharm. Sci. 90, 872–887 (2001).
(
10.1002/jps.1040
) / J. Pharm. Sci. by JA Searles (2001) -
Kasper, J. C. & Friess, W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 78, 248–263 (2011).
(
10.1016/j.ejpb.2011.03.010
) / Eur. J. Pharm. Biopharm. by JC Kasper (2011) -
Searles, J. A., Carpenter, J. F. & Randolph, T. W. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J. Pharm. Sci. 90, 860–871 (2001).
(
10.1002/jps.1039
) / J. Pharm. Sci. by JA Searles (2001) - Shalaev, E. & Franks, F. [Solid-liquid state diagram in pharmaceutical lyophilization: Crystallization of Solutes]. Amorphous Food and Pharmaceutical Systems [Levine H. (ed.)] [200–215] (Royal Society of Chemistry, Cambridge, 2002).
-
Konstantinidis, A. K., Kuu, W., Otten, L., Nail, S. L. & Sever, R. R. Controlled nucleation in freeze-drying: Effects on pore size in the dried product layer, mass transfer resistence and primary drying rate. J. Pharm. Sci. 100, 3453–3470 (2011).
(
10.1002/jps.22561
) / J. Pharm. Sci. by AK Konstantinidis (2011) -
Chang, L. et al. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim. Acta 444, 141–147 (2006).
(
10.1016/j.tca.2006.03.006
) / Thermochim. Acta by L Chang (2006) -
Shalaev, E. Y. & Franks, F. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. J. Chem. Soc. Faraday Trans. 91, 1511–1517 (1995).
(
10.1039/ft9959101511
) / J. Chem. Soc. Faraday Trans. by EY Shalaev (1995) -
Pikal, M. J. & Shah, S. R. The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase. Int. J. Pharmaceut. 62, 165–186 (1990).
(
10.1016/0378-5173(90)90231-R
) / Int. J. Pharmaceut. by MJ Pikal (1990) -
Fonseca, F., Passot, S., Cunin, O. & Marin, M. Collapse temperature of freeze-dried lactobacillus bulgaricus suspensions and protective media. Biotechnol. Prog. 20, 229–238 (2004).
(
10.1021/bp034136n
) / Biotechnol. Prog. by F Fonseca (2004) -
Diller, K. R. Bioheat and mass transfer as viewed through a microscope. J. Biomech. Ing. 127, 67–84 (2005).
(
10.1115/1.1835354
) / J. Biomech. Ing. by KR Diller (2005) -
Lu, Q. & Zografi, G. Properties of citric acid at the glass transition. J. Pharm. Sci. 86, 1374–1378 (1997).
(
10.1021/js970157y
) / J. Pharm. Sci. by Q Lu (1997) -
Vijayarajkumar, P., Choudhary, R. K. & Narne, R. Efavirenz loaded novel citric acid dendritic architecture for increased solubility and sustained delivery. J. Pharm. Drug. Deliv. Res. 1, 1–5 (2012).
(
10.7243/2050-120X-1-1
) / J. Pharm. Drug. Deliv. Res. by P Vijayarajkumar (2012) -
Yang, J., Webb, A. R. & Ameer, G. A. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16, 511–516 (2004).
(
10.1002/adma.200306264
) / Adv. Mater. by J Yang (2004) -
Höhne, G., Hemminger, W. & Flammershain, H.-J. Differential Scanning Calorimetry (Springer, Berlin, 1995).
(
10.1007/978-3-662-03302-9
) -
Gordon, M. & Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J. Appl. Chem. 2, 493–500 (1952).
(
10.1002/jctb.5010020901
) / J. Appl. Chem. by M Gordon (1952) -
Katkov, I. I. & Levine, F. Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology 49, 62–82 (2004).
(
10.1016/j.cryobiol.2004.05.004
) / Cryobiology by II Katkov (2004)
Dates
Type | When |
---|---|
Created | 10 years, 8 months ago (Dec. 10, 2014, 5:14 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 12:48 a.m.) |
Indexed | 1 month, 2 weeks ago (July 16, 2025, 8:17 a.m.) |
Issued | 10 years, 8 months ago (Dec. 10, 2014) |
Published | 10 years, 8 months ago (Dec. 10, 2014) |
Published Online | 10 years, 8 months ago (Dec. 10, 2014) |
@article{Bogdan_2014, title={Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep07414}, DOI={10.1038/srep07414}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Bogdan, Anatoli and Molina, Mario J. and Tenhu, Heikki and Bertel, Erminald and Bogdan, Natalia and Loerting, Thomas}, year={2014}, month=dec }