Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Wang, W., Liu, Y., Tang, L., Jin, Y., Zhao, T., & Xiu, F. (2014). Controllable Schottky Barriers between MoS2 and Permalloy. Scientific Reports, 4(1).

Authors 6
  1. Weiyi Wang (first)
  2. Yanwen Liu (additional)
  3. Lei Tang (additional)
  4. Yibo Jin (additional)
  5. Tongtong Zhao (additional)
  6. Faxian Xiu (additional)
References 43 Referenced 81
  1. Han, S. W. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS_{2}. Phys. Rev. B 84 (2011). (10.1103/PhysRevB.84.045409)
  2. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS_{2}: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105 (2010). (10.1103/PhysRevLett.105.136805)
  3. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  4. Lee, H. S. et al. MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012). (10.1021/nl301485q) / Nano Lett. by HS Lee (2012)
  5. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79 (2009). (10.1103/PhysRevB.79.115409)
  6. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS_{2}. Phys. Rev. B 83 (2011). (10.1103/PhysRevB.83.245213)
  7. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotechnol. by B Radisavljevic (2011)
  8. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS nano 6, 74–80 (2011). (10.1021/nn2024557) / ACS nano by Z Yin (2011)
  9. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011). (10.1021/nl201874w) / Nano Lett. by G Eda (2011)
  10. Bishnoi, B. & Ghosh, B. Spin transport in monolayer molybdenum disulfide (MoS2). J. Comput. Electron. (2013). (10.1007/s10825-013-0547-7)
  11. Popov, I., Seifert, G. & Tománek, D. Designing Electrical Contacts to MoS_{2} Monolayers: A Computational Study. Phys. Rev. Lett. 108, 156802 (2012). (10.1103/PhysRevLett.108.156802) / Phys. Rev. Lett. by I Popov (2012)
  12. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  13. Chen, J. R. et al. Control of Schottky Barriers in Single Layer MoS Transistors with Ferromagnetic Contacts. Nano Lett. (2013). (10.1021/nl4010157)
  14. Dankert, A., Langouche, L., Kamalakar, M. V. & Dash, S. P. High-Performance Molybdenum Disulfide Field-Effect Transistors with Spin Tunnel Contacts. ACS nano 8, 476–482 (2014). (10.1021/nn404961e) / ACS nano by A Dankert (2014)
  15. Tao, M., Udeshi, D., Agarwal, S., Maldonado, E. & Kirk, W. P. Negative Schottky barrier between titanium and n-type Si() for low-resistance ohmic contacts. Solid·State Electron. 48, 335–338 (2004). (10.1016/S0038-1101(03)00316-2) / Solid·State Electron. by M Tao (2004)
  16. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012). (10.1002/adma.201104798) / Adv. Mater. by YH Lee (2012)
  17. Bhuiyan, A., Martinez, A. & Esteve, D. A new Richardson plot for non-ideal schottky diodes. Thin Solid Films 161, 93–100 (1988). (10.1016/0040-6090(88)90239-8) / Thin Solid Films by A Bhuiyan (1988)
  18. Anwar, A., Nabet, B., Culp, J. & Castro, F. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. J. Appl. Phys. 85, 2663 (1999). (10.1063/1.369627) / J. Appl. Phys. by A Anwar (1999)
  19. Chuang, S. et al. MoS2 P-type Transistors and Diodes Enabled by High Workfunction MoOx Contacts. Nano Lett. (2014). (10.1021/nl4043505)
  20. Sze, S. M. & Ng, K. K. Physics of semiconductor devices. (John Wiley & Sons, 2006). (10.1002/0470068329)
  21. Fang, F. & Triebwasser, S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon. Appl. Phys. Lett. 4, 145 (1964). (10.1063/1.1754005) / Appl. Phys. Lett. by F Fang (1964)
  22. Fang, F. & Fowler, A. Transport Properties of Electrons in Inverted Silicon Surfaces. Phys. Rev. 169, 619–631 (1968). (10.1103/PhysRev.169.619) / Phys. Rev. by F Fang (1968)
  23. Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS(2). Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  24. Ando, T. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982). (10.1103/RevModPhys.54.437) / Rev. Mod. Phys. by T Ando (1982)
  25. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS_{2} from first principles. Phys. Rev. B 85 (2012). (10.1103/PhysRevB.85.165440)
  26. Fivaz, R. & Mooser, E. Mobility of Charge Carriers in Semiconducting Layer Structures. Phys. Rev. 163, 743–755 (1967). (10.1103/PhysRev.163.743) / Phys. Rev. by R Fivaz (1967)
  27. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6, 216–221 (2011). (10.1038/nnano.2011.19) / Nat. Nanotechnol. by F Xiu (2011)
  28. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64 (2001). (10.1103/PhysRevB.64.184420)
  29. Min, B. C., Motohashi, K., Lodder, C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nat. Mater. 5, 817–822 (2006). (10.1038/nmat1736) / Nat. Mater. by BC Min (2006)
  30. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240 (2002). (10.1063/1.1449530) / Appl. Phys. Lett. by AT Hanbicki (2002)
  31. Zhou, Y. et al. Engineering of tunnel junctions for prospective spin injection in germanium. Appl. Phys. Lett. 94, 242104 (2009). (10.1063/1.3157128) / Appl. Phys. Lett. by Y Zhou (2009)
  32. Meservey, R. & Tedrow, P. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994). (10.1016/0370-1573(94)90105-8) / Phys. Rep. by R Meservey (1994)
  33. van't Erve, O. M. J. et al. Comparison of Fe/Schottky and Fe/Al[sub 2]O[sub 3] tunnel barrier contacts for electrical spin injection into GaAs. Appl. Phys. Lett. 84, 4334 (2004). (10.1063/1.1758305) / Appl. Phys. Lett. by OMJ van't Erve (2004)
  34. Jain, A. et al. Electrical spin injection and detection at Al2O3/n-type germanium interface using three terminal geometry. Appl. Phys. Lett. 99, 162102 (2011). (10.1063/1.3652757) / Appl. Phys. Lett. by A Jain (2011)
  35. Tran, M. et al. Enhancement of the Spin Accumulation at the Interface between a Spin-Polarized Tunnel Junction and a Semiconductor. Phys. Rev. Lett. 102 (2009). (10.1103/PhysRevLett.102.036601)
  36. Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3, 542–546 (2007). (10.1038/nphys673) / Nat. Phys. by BT Jonker (2007)
  37. Dlubak, B. et al. Are Al[sub 2]O[sub 3] and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97, 092502 (2010). (10.1063/1.3476339) / Appl. Phys. Lett. by B Dlubak (2010)
  38. Datta, S. Electronic transport in mesoscopic systems. (Cambridge university press, 1997).
  39. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate. Small 8, 966–971 (2012). (10.1002/smll.201102654) / Small by Y Zhan (2012)
  40. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  41. Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012). (10.1038/nphys2331) / Nat. Phys. by B Dlubak (2012)
  42. Tongay, S. et al. Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS and WS Monolayers. Nano Lett. (2014). (10.1021/nl500515q)
  43. Chen, J. J. et al. Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 4, 1921 (2013). (10.1038/ncomms2935) / Nat. Commun. by JJ Chen (2013)
Dates
Type When
Created 10 years, 10 months ago (Nov. 5, 2014, 5:15 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 1:21 a.m.)
Indexed 1 month, 2 weeks ago (July 20, 2025, 12:28 a.m.)
Issued 10 years, 10 months ago (Nov. 5, 2014)
Published 10 years, 10 months ago (Nov. 5, 2014)
Published Online 10 years, 10 months ago (Nov. 5, 2014)
Funders 0

None

@article{Wang_2014, title={Controllable Schottky Barriers between MoS2 and Permalloy}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06928}, DOI={10.1038/srep06928}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Wang, Weiyi and Liu, Yanwen and Tang, Lei and Jin, Yibo and Zhao, Tongtong and Xiu, Faxian}, year={2014}, month=nov }