Crossref
journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
References
43
Referenced
81
-
Han, S. W. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS_{2}. Phys. Rev. B 84 (2011).
(
10.1103/PhysRevB.84.045409
) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS_{2}: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105 (2010).
(
10.1103/PhysRevLett.105.136805
) -
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
(
10.1021/nl903868w
) / Nano Lett. by A Splendiani (2010) -
Lee, H. S. et al. MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).
(
10.1021/nl301485q
) / Nano Lett. by HS Lee (2012) -
Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79 (2009).
(
10.1103/PhysRevB.79.115409
) -
Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS_{2}. Phys. Rev. B 83 (2011).
(
10.1103/PhysRevB.83.245213
) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Yin, Z. et al. Single-layer MoS2 phototransistors. ACS nano 6, 74–80 (2011).
(
10.1021/nn2024557
) / ACS nano by Z Yin (2011) -
Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).
(
10.1021/nl201874w
) / Nano Lett. by G Eda (2011) -
Bishnoi, B. & Ghosh, B. Spin transport in monolayer molybdenum disulfide (MoS2). J. Comput. Electron. (2013).
(
10.1007/s10825-013-0547-7
) -
Popov, I., Seifert, G. & Tománek, D. Designing Electrical Contacts to MoS_{2} Monolayers: A Computational Study. Phys. Rev. Lett. 108, 156802 (2012).
(
10.1103/PhysRevLett.108.156802
) / Phys. Rev. Lett. by I Popov (2012) -
Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
(
10.1021/nl303583v
) / Nano Lett. by S Das (2013) -
Chen, J. R. et al. Control of Schottky Barriers in Single Layer MoS Transistors with Ferromagnetic Contacts. Nano Lett. (2013).
(
10.1021/nl4010157
) -
Dankert, A., Langouche, L., Kamalakar, M. V. & Dash, S. P. High-Performance Molybdenum Disulfide Field-Effect Transistors with Spin Tunnel Contacts. ACS nano 8, 476–482 (2014).
(
10.1021/nn404961e
) / ACS nano by A Dankert (2014) -
Tao, M., Udeshi, D., Agarwal, S., Maldonado, E. & Kirk, W. P. Negative Schottky barrier between titanium and n-type Si() for low-resistance ohmic contacts. Solid·State Electron. 48, 335–338 (2004).
(
10.1016/S0038-1101(03)00316-2
) / Solid·State Electron. by M Tao (2004) -
Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
(
10.1002/adma.201104798
) / Adv. Mater. by YH Lee (2012) -
Bhuiyan, A., Martinez, A. & Esteve, D. A new Richardson plot for non-ideal schottky diodes. Thin Solid Films 161, 93–100 (1988).
(
10.1016/0040-6090(88)90239-8
) / Thin Solid Films by A Bhuiyan (1988) -
Anwar, A., Nabet, B., Culp, J. & Castro, F. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. J. Appl. Phys. 85, 2663 (1999).
(
10.1063/1.369627
) / J. Appl. Phys. by A Anwar (1999) -
Chuang, S. et al. MoS2 P-type Transistors and Diodes Enabled by High Workfunction MoOx Contacts. Nano Lett. (2014).
(
10.1021/nl4043505
) -
Sze, S. M. & Ng, K. K. Physics of semiconductor devices. (John Wiley & Sons, 2006).
(
10.1002/0470068329
) -
Fang, F. & Triebwasser, S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon. Appl. Phys. Lett. 4, 145 (1964).
(
10.1063/1.1754005
) / Appl. Phys. Lett. by F Fang (1964) -
Fang, F. & Fowler, A. Transport Properties of Electrons in Inverted Silicon Surfaces. Phys. Rev. 169, 619–631 (1968).
(
10.1103/PhysRev.169.619
) / Phys. Rev. by F Fang (1968) -
Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS(2). Nat. Mater. 12, 815–820 (2013).
(
10.1038/nmat3687
) / Nat. Mater. by B Radisavljevic (2013) -
Ando, T. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).
(
10.1103/RevModPhys.54.437
) / Rev. Mod. Phys. by T Ando (1982) -
Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS_{2} from first principles. Phys. Rev. B 85 (2012).
(
10.1103/PhysRevB.85.165440
) -
Fivaz, R. & Mooser, E. Mobility of Charge Carriers in Semiconducting Layer Structures. Phys. Rev. 163, 743–755 (1967).
(
10.1103/PhysRev.163.743
) / Phys. Rev. by R Fivaz (1967) -
Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6, 216–221 (2011).
(
10.1038/nnano.2011.19
) / Nat. Nanotechnol. by F Xiu (2011) -
Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64 (2001).
(
10.1103/PhysRevB.64.184420
) -
Min, B. C., Motohashi, K., Lodder, C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nat. Mater. 5, 817–822 (2006).
(
10.1038/nmat1736
) / Nat. Mater. by BC Min (2006) -
Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240 (2002).
(
10.1063/1.1449530
) / Appl. Phys. Lett. by AT Hanbicki (2002) -
Zhou, Y. et al. Engineering of tunnel junctions for prospective spin injection in germanium. Appl. Phys. Lett. 94, 242104 (2009).
(
10.1063/1.3157128
) / Appl. Phys. Lett. by Y Zhou (2009) -
Meservey, R. & Tedrow, P. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).
(
10.1016/0370-1573(94)90105-8
) / Phys. Rep. by R Meservey (1994) -
van't Erve, O. M. J. et al. Comparison of Fe/Schottky and Fe/Al[sub 2]O[sub 3] tunnel barrier contacts for electrical spin injection into GaAs. Appl. Phys. Lett. 84, 4334 (2004).
(
10.1063/1.1758305
) / Appl. Phys. Lett. by OMJ van't Erve (2004) -
Jain, A. et al. Electrical spin injection and detection at Al2O3/n-type germanium interface using three terminal geometry. Appl. Phys. Lett. 99, 162102 (2011).
(
10.1063/1.3652757
) / Appl. Phys. Lett. by A Jain (2011) -
Tran, M. et al. Enhancement of the Spin Accumulation at the Interface between a Spin-Polarized Tunnel Junction and a Semiconductor. Phys. Rev. Lett. 102 (2009).
(
10.1103/PhysRevLett.102.036601
) -
Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3, 542–546 (2007).
(
10.1038/nphys673
) / Nat. Phys. by BT Jonker (2007) -
Dlubak, B. et al. Are Al[sub 2]O[sub 3] and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97, 092502 (2010).
(
10.1063/1.3476339
) / Appl. Phys. Lett. by B Dlubak (2010) - Datta, S. Electronic transport in mesoscopic systems. (Cambridge university press, 1997).
-
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate. Small 8, 966–971 (2012).
(
10.1002/smll.201102654
) / Small by Y Zhan (2012) -
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
(
10.1038/nnano.2010.172
) / Nat. Nanotechnol. by CR Dean (2010) -
Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012).
(
10.1038/nphys2331
) / Nat. Phys. by B Dlubak (2012) -
Tongay, S. et al. Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS and WS Monolayers. Nano Lett. (2014).
(
10.1021/nl500515q
) -
Chen, J. J. et al. Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 4, 1921 (2013).
(
10.1038/ncomms2935
) / Nat. Commun. by JJ Chen (2013)
Dates
Type | When |
---|---|
Created | 10 years, 10 months ago (Nov. 5, 2014, 5:15 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 1:21 a.m.) |
Indexed | 1 month, 2 weeks ago (July 20, 2025, 12:28 a.m.) |
Issued | 10 years, 10 months ago (Nov. 5, 2014) |
Published | 10 years, 10 months ago (Nov. 5, 2014) |
Published Online | 10 years, 10 months ago (Nov. 5, 2014) |
@article{Wang_2014, title={Controllable Schottky Barriers between MoS2 and Permalloy}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06928}, DOI={10.1038/srep06928}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Wang, Weiyi and Liu, Yanwen and Tang, Lei and Jin, Yibo and Zhao, Tongtong and Xiu, Faxian}, year={2014}, month=nov }