Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Middey, S., Rivero, P., Meyers, D., Kareev, M., Liu, X., Cao, Y., Freeland, J. W., Barraza-Lopez, S., & Chakhalian, J. (2014). Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate. Scientific Reports, 4(1).

Authors 9
  1. S. Middey (first)
  2. P. Rivero (additional)
  3. D. Meyers (additional)
  4. M. Kareev (additional)
  5. X. Liu (additional)
  6. Y. Cao (additional)
  7. J. W. Freeland (additional)
  8. S. Barraza-Lopez (additional)
  9. J. Chakhalian (additional)
References 51 Referenced 61
  1. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nature Mater. 11, 92–94 (2012). (10.1038/nmat3225) / Nature Mater. by J Chakhalian (2012)
  2. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012). (10.1038/nmat3223) / Nature Mater. by HY Hwang (2012)
  3. Yu, P., Chu, Y.-H. & Ramesh, R. Oxide interfaces: pathways to novel phenomena. Mater. Today 15, 320–327 (2012). (10.1016/S1369-7021(12)70137-2) / Mater. Today by P Yu (2012)
  4. Bibes, M., Villegas Javier, E. & Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Advances In Physics 60, 5–84 (2010). (10.1080/00018732.2010.534865) / Advances In Physics by M Bibes (2010)
  5. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004). (10.1038/nature02308) / Nature by A Ohtomo (2004)
  6. Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196–1199 (2007). (10.1126/science.1146006) / Science by N Reyren (2007)
  7. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006). (10.1038/nmat1569) / Nature Mater. by N Nakagawa (2006)
  8. Savoia, A. et al. Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: Evidence from optical second harmonic generation. Phys. Rev. B 80, 075110 (2009). (10.1103/PhysRevB.80.075110) / Phys. Rev. B by A Savoia (2009)
  9. Sing, M. et al. Profiling the Interface Electron Gas of LaAlO3/SrTiO3 Heterostructures with Hard X-Ray Photoelectron Spectroscopy. Phys. Rev. Lett. 102, 176805 (2009). (10.1103/PhysRevLett.102.176805) / Phys. Rev. Lett. by M Sing (2009)
  10. Salluzzo, M. et al. Structural and Electronic Reconstructions at the LaAlO3/SrTiO3 Interface. Adv. Mater. 25, 2333 (2013). (10.1002/adma.201204555) / Adv. Mater. by M Salluzzo (2013)
  11. Herranz, G. et al. High Mobility in LaAlO3/SrTiO3 Heterostructures: Origin, Dimensionality and Perspectives. Phys. Rev. Lett. 98, 216803 (2007). (10.1103/PhysRevLett.98.216803) / Phys. Rev. Lett. by G Herranz (2007)
  12. Park, J. et al. Oxygen-Vacancy-Induced Orbital Reconstruction of Ti Ions at the Interface of LaAlO3/SrTiO3 Heterostructures: A Resonant Soft-X-Ray Scattering Study. Phys Rev. Lett. 110, 017401 (2013). (10.1103/PhysRevLett.110.017401) / Phys Rev. Lett. by J Park (2013)
  13. Lin, W.-N. et al. Electrostatic Modulation of LaAlO3/SrTiO3 Interface Transport in an Electric Double-Layer Transistor. Adv. Mater. Interfaces 1, 1300001 (2014). (10.1002/admi.201300001) / Adv. Mater. Interfaces by W-N Lin (2014)
  14. Hotta, Y., Susaki, T. & Hwang, H. Y. Polar Discontinuity Doping of the LaVO3/SrTiO3 Interface. Phys. Rev. Lett. 99, 236805 (2007). (10.1103/PhysRevLett.99.236805) / Phys. Rev. Lett. by Y Hotta (2007)
  15. Takizawa, M. et al. Spectroscopic evidence of competing interactions in polar multilayers LaAlO3/LaVO3/LaAlO3 . Phys. Rev. Lett. 102, 236401 (2009). (10.1103/PhysRevLett.102.236401) / Phys. Rev. Lett. by M Takizawa (2009)
  16. Chambers, S. A. et al. Band allignment, built-In Potential and the absence of conductivity at the LaCrO3/SrTiO3 (001) heterojunction. Phys. Rev. Lett. 107, 206802 (2011). (10.1103/PhysRevLett.107.206802) / Phys. Rev. Lett. by SA Chambers (2011)
  17. Akbashev, A. R. et al. Reconstruction of the polar interface between hexagonal LuFeO3 and intergrown Fe3O4 nanolayers. Sci. Rep. 2, 672 (2012). (10.1038/srep00672) / Sci. Rep. by AR Akbashev (2012)
  18. Zhong, Z., Xu, P. X. & Kelly, P. J. Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces. Phys. Rev. B 82, 165127 (2010). (10.1103/PhysRevB.82.165127) / Phys. Rev. B by Z Zhong (2010)
  19. Rüegg, A. & Fiete, G. A. Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B 84, 201103(R) (2011). (10.1103/PhysRevB.84.201103) / Phys. Rev. B by A Rüegg (2011)
  20. Yang, K.-Y. et al. Possible interaction-driven topological phases in (111) bilayers of LaNiO3 . Phys. Rev. B 84, 201104(R) (2011). (10.1103/PhysRevB.84.201104) / Phys. Rev. B by K-Y Yang (2011)
  21. Wang, F. & Ran, Y. Nearly at band with Chern number C = 2 on the dice lattice. Phys. Rev. B 84, 241103(R) (2011). (10.1103/PhysRevB.84.241103) / Phys. Rev. B by F Wang (2011)
  22. Xiao, D. et al. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011). (10.1038/ncomms1602) / Nat. Commun. by D Xiao (2011)
  23. Rüegg, A. et al. Electronic structure of (LaNiO3)2/(LaAlO3)N heterostructures grown along 111. Phys. Rev. B 85, 245131 (2012). (10.1103/PhysRevB.85.245131) / Phys. Rev. B by A Rüegg (2012)
  24. Okamoto, S. Doped Mott Insulators in (111) Bilayers of Perovskite Transition-Metal Oxides with a Strong Spin-Orbit Coupling. Phys. Rev. Lett. 110, 066403 (2013). (10.1103/PhysRevLett.110.066403) / Phys. Rev. Lett. by S Okamoto (2013)
  25. Rüegg, A. et al. Lattice distortion effects on topological phases in LaNiO3)2/(LaAlO3)N heterostructures grown along the 111. direction. Phys. Rev. B 88, 115146 (2013). (10.1103/PhysRevB.88.115146) / Phys. Rev. B by A Rüegg (2013)
  26. Blok, J. L. et al. Epitaxial oxide growth on polar (111) surfaces. Appl. Phys. Lett. 99, 151917 (2011). (10.1063/1.3652701) / Appl. Phys. Lett. by JL Blok (2011)
  27. Liu, J. et al. Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices. Appl. Phys. Lett. 96, 133111 (2010). (10.1063/1.3371690) / Appl. Phys. Lett. by J Liu (2010)
  28. Liu, J. et al. Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices. Phys. Rev. B 83, 161102(R) (2011). (10.1103/PhysRevB.83.161102) / Phys. Rev. B by J Liu (2011)
  29. Freeland, J. W. et al. Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices. Euro Phys. Lett. 96, 57004 (2011). (10.1209/0295-5075/96/57004) / Euro Phys. Lett. by JW Freeland (2011)
  30. Boris, A. V. et al. Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices. Science 332, 937–940 (2011). (10.1126/science.1202647) / Science by AV Boris (2011)
  31. Benckiser, E. et al. Orbital reectometry of oxide heterostructures. Nature Mater. 10, 189–193 (2011). (10.1038/nmat2958) / Nature Mater. by E Benckiser (2011)
  32. Scherwitzl, R. et al. Metal-insulator transition in ultrathin LaNiO3 films. Phys. Rev. Lett. 106, 246403 (2011). (10.1103/PhysRevLett.106.246403) / Phys. Rev. Lett. by R Scherwitzl (2011)
  33. Chakhalian, J. et al. Asymmetric Orbital-Lattice Interactions in Ultrathin Correlated Oxide Films. Phys. Rev. Lett. 107, 116805 (2011). (10.1103/PhysRevLett.107.116805) / Phys. Rev. Lett. by J Chakhalian (2011)
  34. Chaloupka, J. & Khaliullin, G. Orbital Order and Possible Superconductivity in LaNiO3/LaMO3 Superlattices. Phys. Rev. Lett. 100, 016404 (2008). (10.1103/PhysRevLett.100.016404) / Phys. Rev. Lett. by J Chaloupka (2008)
  35. Hansmann, P. et al. Turning a Nickelate Fermi Surface into a Cupratelike One through Heterostructuring. Phys. Rev. Lett. 103, 016401 (2009). (10.1103/PhysRevLett.103.016401) / Phys. Rev. Lett. by P Hansmann (2009)
  36. Rödel, T. C. et al. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO3 (110) and (111) Surfaces. Phys. Rev. Appl. 1, 051002 (2014). (10.1103/PhysRevApplied.1.051002) / Phys. Rev. Appl. by TC Rödel (2014)
  37. Wang, S. C. P. et al. Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71, 2955 (1997). (10.1063/1.120227) / Appl. Phys. Lett. by SCP Wang (1997)
  38. Kareev, M. et al. Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation. J. Appl. Phys. 109, 114303 (2011). (10.1063/1.3590146) / J. Appl. Phys. by M Kareev (2011)
  39. Middey, S. et al. Epitaxial stabilization of ultra thin films of electron doped manganites. Appl. Phys. Lett. 104, 202409 (2014). (10.1063/1.4879456) / Appl. Phys. Lett. by S Middey (2014)
  40. Middey, S. et al. Epitaxial growth of (111)-oriented LaAlO3/LaNiO3 ultra-thin superlattices. Appl. Phys. Lett. 101, 261602 (2012). (10.1063/1.4773375) / Appl. Phys. Lett. by S Middey (2012)
  41. Alonso, J. A. & Martinezlope, M. J. Preparation and crystal-structure of the defficient perovskite LaNiO2.5, solved from neutron diffraction data. J. Chem. Soc., Dalton Trans. 1995, 2819–2824 (1995). (10.1039/DT9950002819) / J. Chem. Soc., Dalton Trans. by JA Alonso (1995)
  42. Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite 1. evidence for new phases - La2Ni2O5 and LaNiO2 . J. Chem. Soc. Faraday Trans. 79, 1181 (1983). (10.1039/F29837901181) / J. Chem. Soc. Faraday Trans. by M Crespin (1983)
  43. Abbate, M. et al. Electronic structure and metal-insulator transition in LaNiO3−δ . Phys. Rev. B 65, 155101 (2002). (10.1103/PhysRevB.65.155101) / Phys. Rev. B by M Abbate (2002)
  44. Sánchez, R. D. et al. Metal-insulator transition in oxygen-deficient LaNiO3−x perovskites. Phys. Rev. B 54, 16574 (1996). (10.1103/PhysRevB.54.16574) / Phys. Rev. B by RD Sánchez (1996)
  45. Stølen, S., Bakken, E. & Mohn, C. E. Oxygen-deficient perovskites: linking structure, energetics and ion-transport. Phys. Chem. Chem. Phys. 8, 429 (2006). (10.1039/B512271F) / Phys. Chem. Chem. Phys. by S Stølen (2006)
  46. Stølen, S., Mohn, C. E., Ravundran, P. & Allan, N. L. Topography of the Potential Energy Hypersurface and Criteria for Fast-Ion Conduction in Perovskite-Related A2B2O5 Oxides. J. Phys. Chem. B 109, 13262 (2005). (10.1021/jp050697g) / J. Phys. Chem. B by S Stølen (2005)
  47. Posadas, A. B. et al. Oxygen vacancy-mediated room-temperature ferromagnetism in insulating cobalt-substituted SrTiO3 epitaxially integrated with silicon. Phys. Rev. B 87, 144422 (2013). (10.1103/PhysRevB.87.144422) / Phys. Rev. B by AB Posadas (2013)
  48. Zhang, J. et al. Depth-resolved subsurface defects in chemically etched SrTiO3 . Appl. Phys. Lett. 94, 092904 (2009). (10.1063/1.3093671) / Appl. Phys. Lett. by J Zhang (2009)
  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
Dates
Type When
Created 10 years, 9 months ago (Oct. 29, 2014, 6:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 1:40 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:39 a.m.)
Issued 10 years, 9 months ago (Oct. 29, 2014)
Published 10 years, 9 months ago (Oct. 29, 2014)
Published Online 10 years, 9 months ago (Oct. 29, 2014)
Funders 0

None

@article{Middey_2014, title={Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06819}, DOI={10.1038/srep06819}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Middey, S. and Rivero, P. and Meyers, D. and Kareev, M. and Liu, X. and Cao, Y. and Freeland, J. W. and Barraza-Lopez, S. and Chakhalian, J.}, year={2014}, month=oct }