Crossref
journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
References
55
Referenced
790
-
Joo, S. et al. Magnetic-field-controlled reconfigurable semiconductor logic. Nature 494, 72–76 (2013).
(
10.1038/nature11817
) / Nature by S Joo (2013) -
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 320, 190–194 (2008).
(
10.1126/science.1145799
) / Science by SSP Parkin (2008) -
Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990 (2005).
(
10.1209/epl/i2004-10452-6
) / Europhys. Lett. by A Thiaville (2005) -
Kläui, M. et al. Direct Observation of Domain-Wall Configurations Transformed by Spin Currents. Phys. Rev. Lett. 95, 026601 (2005).
(
10.1103/PhysRevLett.95.026601
) / Phys. Rev. Lett. by M Kläui (2005) -
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).
(
10.1103/PhysRevLett.83.1834
) / Phys. Rev. Lett. by JE Hirsch (1999) -
Liu, L. et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555–558 (2012).
(
10.1126/science.1218197
) / Science by L Liu (2012) -
Finocchio, G., Carpentieri, M., Martinez, E. & Azzerboni, B. Switching of a single ferromagnetic layer driven by spin Hall effect. Appl. Phys. Lett. 102, 212410 (2013).
(
10.1063/1.4808092
) / Appl. Phys. Lett. by G Finocchio (2013) -
Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960).
(
10.1103/PhysRevLett.4.228
) / Phys. Rev. Lett. by T Moriya (1960) -
Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
(
10.1016/0022-3697(58)90076-3
) / J. Phys. Chem. Solids by I Dzyaloshinskii (1958) -
Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).
(
10.1038/nnano.2013.102
) / Nat. Nanotech. by K-S Ryu (2013) -
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
(
10.1038/nmat3675
) / Nat. Mater. by S Emori (2013) -
Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
(
10.1038/nature05056
) / Nature by UK Rössler (2006) -
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010).
(
10.1038/nature09124
) / Nature by XZ Yu (2010) -
Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Comm. 3, 988 (2012).
(
10.1038/ncomms1990
) / Nat. Comm. by XZ Yu (2012) -
Fert, A., Cros, V. & Sampiao, J. Skyrmions on the track. Nat. Nanotech. 8, 152 (2013).
(
10.1038/nnano.2013.29
) / Nat. Nanotech. by A Fert (2013) -
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Comm. 4, 1463 (2013).
(
10.1038/ncomms2442
) / Nat. Comm. by J Iwasaki (2013) -
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotech. 8, 742–747 (2013).
(
10.1038/nnano.2013.176
) / Nat. Nanotech. by J Iwasaki (2013) -
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).
(
10.1038/nnano.2013.243
) / Nat. Nanotech. by N Nagaosa (2013) -
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
(
10.1126/science.1240573
) / Science by N Romming (2013) -
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
(
10.1038/nphys2045
) / Nat. Phys. by S Heinze (2011) -
Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).
(
10.1038/nnano.2013.210
) / Nat. Nanotech. by J Sampaio (2013) -
Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii- Moriya interaction. Phys. Rev. B 88, 184422 (2013).
(
10.1103/PhysRevB.88.184422
) / Phys. Rev. B by S Rohart (2013) -
Ferriani, P. et al. Atomic-Scale Spin Spiral with a Unique Rotational Sense: Mn Monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008).
(
10.1103/PhysRevLett.101.027201
) / Phys. Rev. Lett. by P Ferriani (2008) -
Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).
(
10.1038/nature05802
) / Nature by M Bode (2007) -
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
(
10.1126/science.1166767
) / Science by S Mühlbauer (2009) -
Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe (111) thin films. Phys. Rev. Lett. 108, 267201 (2012).
(
10.1103/PhysRevLett.108.267201
) / Phys. Rev. Lett. by SX Huang (2012) -
Berger, L. A simple theory of spin-wave relaxation in ferromagnetic metals. J. Phys. Chem. Solids 38, 1321 (1977).
(
10.1016/0022-3697(77)90002-6
) / J. Phys. Chem. Solids by L Berger (1977) -
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the Spin Hall Effect in Semiconductors. Science 306, 1910 (2004).
(
10.1126/science.1105514
) / Science by YK Kato (2004) -
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys. Rev. Lett. 109, 096602 (2012).
(
10.1103/PhysRevLett.109.096602
) / Phys. Rev. Lett. by L Liu (2012) -
Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin-Hall effect devices. Nat. Mater. 11, 382–390 (2012).
(
10.1038/nmat3279
) / Nat. Mater. by T Jungwirth (2012) -
Hoffmann, A. Spin-Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).
(
10.1109/TMAG.2013.2262947
) / IEEE Trans. Magn. by A Hoffmann (2013) -
Hals, K. M. D. & Brataas, A. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals. Phys. Rev. B 89, 064426 (2014).
(
10.1103/PhysRevB.89.064426
) / Phys. Rev. B by KMD Hals (2014) -
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1972).
(
10.1103/PhysRevLett.30.230
) / Phys. Rev. Lett. by AA Thiele (1972) -
Knoester, M. E., Sinova, J. & Duine, R. A. Phenomenology of current-skyrmion interactions in thin films with perpendicular magnetic anisotropy. Phys. Rev. B 89, 064425 (2014).
(
10.1103/PhysRevB.89.064425
) / Phys. Rev. B by ME Knoester (2014) -
Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).
(
10.1103/PhysRevLett.102.186602
) / Phys. Rev. Lett. by A Neubauer (2009) -
Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).
(
10.1038/nphys2231
) / Nat. Phys. by T Schulz (2012) -
Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).
(
10.1038/nmat3020
) / Nat. Mater. by IM Miron (2011) -
Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
(
10.1063/1.4753947
) / Appl. Phys. Lett. by C-F Pai (2012) -
Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nat. Mater. 2, 521–523 (2003).
(
10.1038/nmat931
) / Nat. Mater. by Y Nakatani (2003) - Hrabec, A. et al. DMI meter: Measuring the Dzyaloshinskii-Moriya interaction inversion in Pt/Co/Ir/Pt multilayers., arXiv:1402.5410v1.
-
Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403(R) (2008).
(
10.1103/PhysRevB.78.140403
) / Phys. Rev. B by M Heide (2008) -
Mochizuki, M. Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals. Phys. Rev. Lett. 108, 017601 (2012).
(
10.1103/PhysRevLett.108.017601
) / Phys. Rev. Lett. by M Mochizuki (2012) -
Perez, N., Martinez, E., Torres, L., Woo, S.-H., Emori, S. & Beach, G. S. D. Chiral magnetization textures stabilized by the Dzyaloshinskii-Moriya interaction during spin-orbit torque switching. Appl. Phys. Lett. 104, 092403 (2014).
(
10.1063/1.4867199
) / Appl. Phys. Lett. by N Perez (2014) -
Iwasaki, J., Koshibae, W. & Nagaosa, N. Colossal Spin Transfer Torque Effect on Skyrmion along the Edge. Nano Lett., 10.1021/nl501379k (2014).
(
10.1021/nl501379k
) -
Lopez-Diaz, L. et al. Micromagnetic simulations using Graphics Processing Units. J. Phys. D Appl. Phys. 45, 323001 (2012).
(
10.1088/0022-3727/45/32/323001
) / J. Phys. D Appl. Phys. by L Lopez-Diaz (2012) - GoParallel, S. L. https://www.goparallel.net/index.php/gp-software, (2012) Date of access:01/07/2014.
-
Tomasello, R., Carpentieri, M. & Finocchio, G. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics. Appl. Phys. Lett. 103, 252408 (2013).
(
10.1063/1.4851939
) / Appl. Phys. Lett. by R Tomasello (2013) -
Tomasello, R., Carpentieri, M. & Finocchio, G. Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect. J. Appl. Phys. 115, 17C730 (2014).
(
10.1063/1.4867750
) / J. Appl. Phys. by R Tomasello (2014) -
Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).
(
10.1038/nmat2804
) / Nat. Mater. by S Ikeda (2010) -
Kubetzka, A., Bode, M., Pietzsch, O. & Wiesendanger, R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 88, 057201 (2002).
(
10.1103/PhysRevLett.88.057201
) / Phys. Rev. Lett. by A Kubetzka (2002) -
Martinez, E., Finocchio, G., Torres, L. & Lopez-Diaz, L. The influence of the spin-orbit torques on the current-driven domain wall motion. AIP Adv. 3, 072109 (2013).
(
10.1063/1.4813845
) / AIP Adv. by E Martinez (2013) -
Pai, C.-F. et al. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Appl. Phys. Lett. 108, 082407 (2014).
(
10.1063/1.4866965
) / Appl. Phys. Lett. by C-F Pai (2014) -
Metaxas, P. J. et al. High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3, 1829 (2013).
(
10.1038/srep01829
) / Sci. Rep. by PJ Metaxas (2013) -
Brown, W. F., Jr Thermal fluctuations of a single domain particle. Phys. Rev. 130, 1677 (1963).
(
10.1103/PhysRev.130.1677
) / Phys. Rev. by WF Brown Jr (1963) -
Apalkov, D. M. & Visscher, P. B. Spin-torque switching: Fokker-Planck rate calculation. Phys. Rev. B 72, 180405(R) (2005).
(
10.1103/PhysRevB.72.180405
) / Phys. Rev. B by DM Apalkov (2005)
Dates
Type | When |
---|---|
Created | 10 years, 9 months ago (Oct. 29, 2014, 6:17 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 1:42 a.m.) |
Indexed | 15 hours, 9 minutes ago (Aug. 23, 2025, 1:11 a.m.) |
Issued | 10 years, 9 months ago (Oct. 29, 2014) |
Published | 10 years, 9 months ago (Oct. 29, 2014) |
Published Online | 10 years, 9 months ago (Oct. 29, 2014) |
@article{Tomasello_2014, title={A strategy for the design of skyrmion racetrack memories}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06784}, DOI={10.1038/srep06784}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tomasello, R. and Martinez, E. and Zivieri, R. and Torres, L. and Carpentieri, M. and Finocchio, G.}, year={2014}, month=oct }