Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Tomasello, R., Martinez, E., Zivieri, R., Torres, L., Carpentieri, M., & Finocchio, G. (2014). A strategy for the design of skyrmion racetrack memories. Scientific Reports, 4(1).

Authors 6
  1. R. Tomasello (first)
  2. E. Martinez (additional)
  3. R. Zivieri (additional)
  4. L. Torres (additional)
  5. M. Carpentieri (additional)
  6. G. Finocchio (additional)
References 55 Referenced 790
  1. Joo, S. et al. Magnetic-field-controlled reconfigurable semiconductor logic. Nature 494, 72–76 (2013). (10.1038/nature11817) / Nature by S Joo (2013)
  2. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 320, 190–194 (2008). (10.1126/science.1145799) / Science by SSP Parkin (2008)
  3. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990 (2005). (10.1209/epl/i2004-10452-6) / Europhys. Lett. by A Thiaville (2005)
  4. Kläui, M. et al. Direct Observation of Domain-Wall Configurations Transformed by Spin Currents. Phys. Rev. Lett. 95, 026601 (2005). (10.1103/PhysRevLett.95.026601) / Phys. Rev. Lett. by M Kläui (2005)
  5. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999). (10.1103/PhysRevLett.83.1834) / Phys. Rev. Lett. by JE Hirsch (1999)
  6. Liu, L. et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555–558 (2012). (10.1126/science.1218197) / Science by L Liu (2012)
  7. Finocchio, G., Carpentieri, M., Martinez, E. & Azzerboni, B. Switching of a single ferromagnetic layer driven by spin Hall effect. Appl. Phys. Lett. 102, 212410 (2013). (10.1063/1.4808092) / Appl. Phys. Lett. by G Finocchio (2013)
  8. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960). (10.1103/PhysRevLett.4.228) / Phys. Rev. Lett. by T Moriya (1960)
  9. Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958). (10.1016/0022-3697(58)90076-3) / J. Phys. Chem. Solids by I Dzyaloshinskii (1958)
  10. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013). (10.1038/nnano.2013.102) / Nat. Nanotech. by K-S Ryu (2013)
  11. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013). (10.1038/nmat3675) / Nat. Mater. by S Emori (2013)
  12. Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006). (10.1038/nature05056) / Nature by UK Rössler (2006)
  13. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010). (10.1038/nature09124) / Nature by XZ Yu (2010)
  14. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Comm. 3, 988 (2012). (10.1038/ncomms1990) / Nat. Comm. by XZ Yu (2012)
  15. Fert, A., Cros, V. & Sampiao, J. Skyrmions on the track. Nat. Nanotech. 8, 152 (2013). (10.1038/nnano.2013.29) / Nat. Nanotech. by A Fert (2013)
  16. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Comm. 4, 1463 (2013). (10.1038/ncomms2442) / Nat. Comm. by J Iwasaki (2013)
  17. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotech. 8, 742–747 (2013). (10.1038/nnano.2013.176) / Nat. Nanotech. by J Iwasaki (2013)
  18. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013). (10.1038/nnano.2013.243) / Nat. Nanotech. by N Nagaosa (2013)
  19. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013). (10.1126/science.1240573) / Science by N Romming (2013)
  20. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011). (10.1038/nphys2045) / Nat. Phys. by S Heinze (2011)
  21. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013). (10.1038/nnano.2013.210) / Nat. Nanotech. by J Sampaio (2013)
  22. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii- Moriya interaction. Phys. Rev. B 88, 184422 (2013). (10.1103/PhysRevB.88.184422) / Phys. Rev. B by S Rohart (2013)
  23. Ferriani, P. et al. Atomic-Scale Spin Spiral with a Unique Rotational Sense: Mn Monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008). (10.1103/PhysRevLett.101.027201) / Phys. Rev. Lett. by P Ferriani (2008)
  24. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007). (10.1038/nature05802) / Nature by M Bode (2007)
  25. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009). (10.1126/science.1166767) / Science by S Mühlbauer (2009)
  26. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe (111) thin films. Phys. Rev. Lett. 108, 267201 (2012). (10.1103/PhysRevLett.108.267201) / Phys. Rev. Lett. by SX Huang (2012)
  27. Berger, L. A simple theory of spin-wave relaxation in ferromagnetic metals. J. Phys. Chem. Solids 38, 1321 (1977). (10.1016/0022-3697(77)90002-6) / J. Phys. Chem. Solids by L Berger (1977)
  28. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the Spin Hall Effect in Semiconductors. Science 306, 1910 (2004). (10.1126/science.1105514) / Science by YK Kato (2004)
  29. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys. Rev. Lett. 109, 096602 (2012). (10.1103/PhysRevLett.109.096602) / Phys. Rev. Lett. by L Liu (2012)
  30. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin-Hall effect devices. Nat. Mater. 11, 382–390 (2012). (10.1038/nmat3279) / Nat. Mater. by T Jungwirth (2012)
  31. Hoffmann, A. Spin-Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013). (10.1109/TMAG.2013.2262947) / IEEE Trans. Magn. by A Hoffmann (2013)
  32. Hals, K. M. D. & Brataas, A. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals. Phys. Rev. B 89, 064426 (2014). (10.1103/PhysRevB.89.064426) / Phys. Rev. B by KMD Hals (2014)
  33. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1972). (10.1103/PhysRevLett.30.230) / Phys. Rev. Lett. by AA Thiele (1972)
  34. Knoester, M. E., Sinova, J. & Duine, R. A. Phenomenology of current-skyrmion interactions in thin films with perpendicular magnetic anisotropy. Phys. Rev. B 89, 064425 (2014). (10.1103/PhysRevB.89.064425) / Phys. Rev. B by ME Knoester (2014)
  35. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009). (10.1103/PhysRevLett.102.186602) / Phys. Rev. Lett. by A Neubauer (2009)
  36. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012). (10.1038/nphys2231) / Nat. Phys. by T Schulz (2012)
  37. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011). (10.1038/nmat3020) / Nat. Mater. by IM Miron (2011)
  38. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012). (10.1063/1.4753947) / Appl. Phys. Lett. by C-F Pai (2012)
  39. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nat. Mater. 2, 521–523 (2003). (10.1038/nmat931) / Nat. Mater. by Y Nakatani (2003)
  40. Hrabec, A. et al. DMI meter: Measuring the Dzyaloshinskii-Moriya interaction inversion in Pt/Co/Ir/Pt multilayers., arXiv:1402.5410v1.
  41. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403(R) (2008). (10.1103/PhysRevB.78.140403) / Phys. Rev. B by M Heide (2008)
  42. Mochizuki, M. Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals. Phys. Rev. Lett. 108, 017601 (2012). (10.1103/PhysRevLett.108.017601) / Phys. Rev. Lett. by M Mochizuki (2012)
  43. Perez, N., Martinez, E., Torres, L., Woo, S.-H., Emori, S. & Beach, G. S. D. Chiral magnetization textures stabilized by the Dzyaloshinskii-Moriya interaction during spin-orbit torque switching. Appl. Phys. Lett. 104, 092403 (2014). (10.1063/1.4867199) / Appl. Phys. Lett. by N Perez (2014)
  44. Iwasaki, J., Koshibae, W. & Nagaosa, N. Colossal Spin Transfer Torque Effect on Skyrmion along the Edge. Nano Lett., 10.1021/nl501379k (2014). (10.1021/nl501379k)
  45. Lopez-Diaz, L. et al. Micromagnetic simulations using Graphics Processing Units. J. Phys. D Appl. Phys. 45, 323001 (2012). (10.1088/0022-3727/45/32/323001) / J. Phys. D Appl. Phys. by L Lopez-Diaz (2012)
  46. GoParallel, S. L. https://www.goparallel.net/index.php/gp-software, (2012) Date of access:01/07/2014.
  47. Tomasello, R., Carpentieri, M. & Finocchio, G. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics. Appl. Phys. Lett. 103, 252408 (2013). (10.1063/1.4851939) / Appl. Phys. Lett. by R Tomasello (2013)
  48. Tomasello, R., Carpentieri, M. & Finocchio, G. Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect. J. Appl. Phys. 115, 17C730 (2014). (10.1063/1.4867750) / J. Appl. Phys. by R Tomasello (2014)
  49. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010). (10.1038/nmat2804) / Nat. Mater. by S Ikeda (2010)
  50. Kubetzka, A., Bode, M., Pietzsch, O. & Wiesendanger, R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 88, 057201 (2002). (10.1103/PhysRevLett.88.057201) / Phys. Rev. Lett. by A Kubetzka (2002)
  51. Martinez, E., Finocchio, G., Torres, L. & Lopez-Diaz, L. The influence of the spin-orbit torques on the current-driven domain wall motion. AIP Adv. 3, 072109 (2013). (10.1063/1.4813845) / AIP Adv. by E Martinez (2013)
  52. Pai, C.-F. et al. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Appl. Phys. Lett. 108, 082407 (2014). (10.1063/1.4866965) / Appl. Phys. Lett. by C-F Pai (2014)
  53. Metaxas, P. J. et al. High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3, 1829 (2013). (10.1038/srep01829) / Sci. Rep. by PJ Metaxas (2013)
  54. Brown, W. F., Jr Thermal fluctuations of a single domain particle. Phys. Rev. 130, 1677 (1963). (10.1103/PhysRev.130.1677) / Phys. Rev. by WF Brown Jr (1963)
  55. Apalkov, D. M. & Visscher, P. B. Spin-torque switching: Fokker-Planck rate calculation. Phys. Rev. B 72, 180405(R) (2005). (10.1103/PhysRevB.72.180405) / Phys. Rev. B by DM Apalkov (2005)
Dates
Type When
Created 10 years, 9 months ago (Oct. 29, 2014, 6:17 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 1:42 a.m.)
Indexed 15 hours, 9 minutes ago (Aug. 23, 2025, 1:11 a.m.)
Issued 10 years, 9 months ago (Oct. 29, 2014)
Published 10 years, 9 months ago (Oct. 29, 2014)
Published Online 10 years, 9 months ago (Oct. 29, 2014)
Funders 0

None

@article{Tomasello_2014, title={A strategy for the design of skyrmion racetrack memories}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06784}, DOI={10.1038/srep06784}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tomasello, R. and Martinez, E. and Zivieri, R. and Torres, L. and Carpentieri, M. and Finocchio, G.}, year={2014}, month=oct }