Abstract
AbstractThe optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.
Bibliography
Klots, A. R., Newaz, A. K. M., Wang, B., Prasai, D., Krzyzanowska, H., Lin, J., Caudel, D., Ghimire, N. J., Yan, J., Ivanov, B. L., Velizhanin, K. A., Burger, A., Mandrus, D. G., Tolk, N. H., Pantelides, S. T., & Bolotin, K. I. (2014). Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Scientific Reports, 4(1).
Authors
16
- A. R. Klots (first)
- A. K. M. Newaz (additional)
- Bin Wang (additional)
- D. Prasai (additional)
- H. Krzyzanowska (additional)
- Junhao Lin (additional)
- D. Caudel (additional)
- N. J. Ghimire (additional)
- J. Yan (additional)
- B. L. Ivanov (additional)
- K. A. Velizhanin (additional)
- A. Burger (additional)
- D. G. Mandrus (additional)
- N. H. Tolk (additional)
- S. T. Pantelides (additional)
- K. I. Bolotin (additional)
References
63
Referenced
382
-
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699–712 (2012).
(
10.1038/nnano.2012.193
) / Nat Nanotechnol by QH Wang (2012) -
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc Nat Acad Sci USA 102, 10451–10453 (2005).
(
10.1073/pnas.0502848102
) / Proc Nat Acad Sci USA by KS Novoselov (2005) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat Nanotechnol by B Radisavljevic (2011) -
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev Mod Phys 81, 109–162 (2009).
(
10.1103/RevModPhys.81.109
) / Rev Mod Phys by AH Castro Neto (2009) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys Rev Lett 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys Rev Lett by KF Mak (2010) -
Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys Rev Lett 108, 196802 (2012).
(
10.1103/PhysRevLett.108.196802
) / Phys Rev Lett by D Xiao (2012) -
Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2 . Nano Lett 10, 1271–1275 (2010).
(
10.1021/nl903868w
) / Nano Lett by A Splendiani (2010) -
Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7, 490–493 (2012).
(
10.1038/nnano.2012.95
) / Nat Nanotechnol by HL Zeng (2012) -
Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494–498 (2012).
(
10.1038/nnano.2012.96
) / Nat Nanotechnol by KF Mak (2012) -
Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys Rev B 86, 081301 (2012).
(
10.1103/PhysRevB.86.081301
) / Phys Rev B by G Sallen (2012) -
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3, 887 (2012).
(
10.1038/ncomms1882
) / Nat Commun by T Cao (2012) -
Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nat Mater 12, 207–211 (2013).
(
10.1038/nmat3505
) / Nat Mater by KF Mak (2013) -
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4, 1474 (2013).
(
10.1038/ncomms2498
) / Nat Commun by JS Ross (2013) -
Newaz, A. K. M. et al. Electrical control of optical properties of monolayer MoS2 . Solid State Commun 155, 49–52 (2013).
(
10.1016/j.ssc.2012.11.010
) / Solid State Commun by AKM Newaz (2013) -
Li, X., Zhang, F. & Niu, Q. Unconventional Quantum Hall Effect and Tunable Spin Hall Effect in Dirac Materials: Application to an Isolated MoS2 Trilayer. Phys Rev Lett 110, 066803 (2013).
(
10.1103/PhysRevLett.110.066803
) / Phys Rev Lett by X Li (2013) -
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
(
10.1126/science.1250140
) / Science by KF Mak (2014) -
Roldán, R., Cappelluti, E. & Guinea, F. Interactions and superconductivity in heavily doped MoS2 . Phys Rev B 88, 054515 (2013).
(
10.1103/PhysRevB.88.054515
) / Phys Rev B by R Roldán (2013) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Wigner, E. On the Interaction of Electrons in Metals. Phys Rev 46, 1002–1011 (1934).
(
10.1103/PhysRev.46.1002
) / Phys Rev by E Wigner (1934) -
Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2013).
(
10.1126/science.1235547
) / Science by L Britnell (2013) -
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat Nanotechnol 8, 497–501 (2013).
(
10.1038/nnano.2013.100
) / Nat Nanotechnol by O Lopez-Sanchez (2013) -
Tsai, D.-S. et al. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 7, 3905–3911 (2013).
(
10.1021/nn305301b
) / ACS Nano by D-S Tsai (2013) -
Wu, C.-C. et al. Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. J Phys Chem Lett 4, 2508–2513 (2013).
(
10.1021/jz401199x
) / J Phys Chem Lett by C-C Wu (2013) -
Yin, Z. et al. Single-Layer MoS2 Phototransistors. ACS Nano 6, 74–80 (2011).
(
10.1021/nn2024557
) / ACS Nano by Z Yin (2011) -
Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett 13, 3664–3670 (2013).
(
10.1021/nl401544y
) / Nano Lett by M Bernardi (2013) -
Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys Rev Lett 111, 216805 (2013).
(
10.1103/PhysRevLett.111.216805
) / Phys Rev Lett by DY Qiu (2013) -
Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86, 115409 (2012).
(
10.1103/PhysRevB.86.115409
) / Phys Rev B by A Ramasubramaniam (2012) -
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 146, 351–355 (2008).
(
10.1016/j.ssc.2008.02.024
) / Solid State Commun by KI Bolotin (2008) -
Jin, T., Kang, J., Su Kim, E., Lee, S. & Lee, C. Suspended single-layer MoS2 devices. J Appl Phys 114, 164509 (2013).
(
10.1063/1.4827477
) / J Appl Phys by T Jin (2013) -
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B 88, 045318 (2013).
(
10.1103/PhysRevB.88.045318
) / Phys Rev B by TC Berkelbach (2013) -
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2 . Nano Lett 13, 4212–4216 (2013).
(
10.1021/nl401916s
) / Nano Lett by BWH Baugher (2013) -
Bao, W. Z., Cai, X. H., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phys Lett 102, 042104 (2013).
(
10.1063/1.4789365
) / Appl Phys Lett by WZ Bao (2013) -
Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat Mater 12, 815–820 (2013).
(
10.1038/nmat3687
) / Nat Mater by B Radisavljevic (2013) -
Eda, G. et al. Photoluminescence from Chemically Exfoliated MoS2 . Nano Lett 12, 526–526 (2012).
(
10.1021/nl2044887
) / Nano Lett by G Eda (2012) -
Soci, C. et al. Nanowire Photodetectors. J Nanosci Nanotechno 10, 1430–1449 (2010).
(
10.1166/jnn.2010.2157
) / J Nanosci Nanotechno by C Soci (2010) -
Collins, R. T., Klitzing, K. v. & Ploog, K. Photocurrent spectroscopy of GaAs/AlxGa1−xAs quantum wells in an electric field. Phys Rev B 33, 4378–4381 (1986).
(
10.1103/PhysRevB.33.4378
) / Phys Rev B by RT Collins (1986) -
Mar, J. D. et al. High-resolution photocurrent spectroscopy of the positive trion state in a single quantum dot. Phys Rev B 87, 155315 (2013).
(
10.1103/PhysRevB.87.155315
) / Phys Rev B by JD Mar (2013) -
Buscema, M. et al. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 . Nano Lett 13, 358–363 (2013).
(
10.1021/nl303321g
) / Nano Lett by M Buscema (2013) -
Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).
(
10.1038/35079000
) / Nature by DS Chemla (2001) -
Kam, K. K. & Parkinson, B. A. Detailed Photocurrent Spectroscopy of the Semiconducting Group-Vi Transition-Metal Dichalcogenides. J Phys Chem 86, 463–467 (1982).
(
10.1021/j100393a010
) / J Phys Chem by KK Kam (1982) -
Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nat Commun 2, 486–493 (2011).
(
10.1038/ncomms1492
) / Nat Commun by P Nagpal (2011) -
Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nat Photonics 7, 53–59 (2013).
(
10.1038/nphoton.2012.314
) / Nat Photonics by M Freitag (2013) -
Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 7, 363–368 (2012).
(
10.1038/nnano.2012.60
) / Nat Nanotechnol by G Konstantatos (2012) -
Molina-Sánchez, A., Sangalli, D., Hummer, K., Marini, A. & Wirtz, L. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer and bulk MoS2 . Phys Rev B 88, 045412 (2013).
(
10.1103/PhysRevB.88.045412
) / Phys Rev B by A Molina-Sánchez (2013) -
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys Rev B 62, 4927–4944 (2000).
(
10.1103/PhysRevB.62.4927
) / Phys Rev B by M Rohlfing (2000) -
Hüser, F., Olsen, T. & Thygesen, K. S. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2 . Phys Rev B 88, 245309 (2013).
(
10.1103/PhysRevB.88.245309
) / Phys Rev B by F Hüser (2013) -
Skinner, B., Shklovskii, B. I. & Voloshin, M. B. Bound state energy of a Coulomb impurity in gapped bilayer graphene. Phys Rev B 89, 041405 (2014).
(
10.1103/PhysRevB.89.041405
) / Phys Rev B by B Skinner (2014) -
Dolui, K., Rungger, I. & Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys Rev B 87, 165402 (2013).
(
10.1103/PhysRevB.87.165402
) / Phys Rev B by K Dolui (2013) -
Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Sci. Rep. 3, 2657 (2013).
(
10.1038/srep02657
) / Sci. Rep. by S Tongay (2013) -
Yang, X. L., Guo, S. H., Chan, F. T., Wong, K. W. & Ching, W. Y. Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys Rev A 43, 1186–1196 (1991).
(
10.1103/PhysRevA.43.1186
) / Phys Rev A by XL Yang (1991) -
Komsa, H.-P. & Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys Rev B 86, 241201 (2012).
(
10.1103/PhysRevB.86.241201
) / Phys Rev B by H-P Komsa (2012) -
Ribeiro, L. A. et al. Exciton dissociation and charge carrier recombination processes in organic semiconductors. J Chem Phys 135, 224901 (2011).
(
10.1063/1.3665392
) / J Chem Phys by LA Ribeiro (2011) -
Mohite, A. D., Gopinath, P., Shah, H. M. & Alphenaar, B. W. Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum. Nano Lett 8, 142–146 (2008).
(
10.1021/nl0722525
) / Nano Lett by AD Mohite (2008) -
Gregg, B. A. Excitonic solar cells. J Phys Chem B 107, 4688–4698 (2003).
(
10.1021/jp022507x
) / J Phys Chem B by BA Gregg (2003) - Ng, K. K. Complete guide to semiconductor devices. International edn, 439–444 (McGraw-Hill, New York, 2002).
-
Fontana, M. et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013).
(
10.1038/srep01634
) / Sci. Rep. by M Fontana (2013) -
Liu, H. C. et al. Multicolor voltage-tunable quantum-well infrared photodetector. Electron Device Letters, IEEE 14, 566–568 (1993).
(
10.1109/55.260791
) / Electron Device Letters, IEEE by HC Liu (1993) -
Eda, G. & Maier, S. A. Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 7, 5660–5665 (2013).
(
10.1021/nn403159y
) / ACS Nano by G Eda (2013) -
Zhu, B., Chen, X. & Cui, X. Exciton Binding Energy of Monolayer WS2 . arXiv:1403.5108 (2014).
(
10.1038/srep09218
) -
Ye, Z. et al. Probing Excitonic Dark States in Single-layer Tungsten Disulfide. arXiv:1403.5568 (2014).
(
10.1038/nature13734
) - Wang, G. et al. Non-linear Optical Spectroscopy of Excited Exciton States for Efficient Valley Coherence Generation in WSe2 Monolayers. arXiv:1404.0056 (2014).
- Chernikov, A. et al. Non-Hydrogenic Exciton Rydberg Series in Monolayer WS2 . arXiv:1403.4270 (2014).
-
He, K. et al. Tightly Bound Excitons in Monolayer WSe2 . Phys Rev Lett 113, 026803 (2014).
(
10.1103/PhysRevLett.113.026803
) / Phys Rev Lett by K He (2014)
Dates
Type | When |
---|---|
Created | 10 years, 10 months ago (Oct. 16, 2014, 5:03 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 1:35 a.m.) |
Indexed | 5 days, 6 hours ago (Aug. 27, 2025, noon) |
Issued | 10 years, 10 months ago (Oct. 16, 2014) |
Published | 10 years, 10 months ago (Oct. 16, 2014) |
Published Online | 10 years, 10 months ago (Oct. 16, 2014) |
@article{Klots_2014, title={Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06608}, DOI={10.1038/srep06608}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Klots, A. R. and Newaz, A. K. M. and Wang, Bin and Prasai, D. and Krzyzanowska, H. and Lin, Junhao and Caudel, D. and Ghimire, N. J. and Yan, J. and Ivanov, B. L. and Velizhanin, K. A. and Burger, A. and Mandrus, D. G. and Tolk, N. H. and Pantelides, S. T. and Bolotin, K. I.}, year={2014}, month=oct }