Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Zhang, W., Ronneberger, I., Zalden, P., Xu, M., Salinga, M., Wuttig, M., & Mazzarello, R. (2014). How fragility makes phase-change data storage robust: insights from ab initio simulations. Scientific Reports, 4(1).

Authors 7
  1. Wei Zhang (first)
  2. Ider Ronneberger (additional)
  3. Peter Zalden (additional)
  4. Ming Xu (additional)
  5. Martin Salinga (additional)
  6. Matthias Wuttig (additional)
  7. Riccardo Mazzarello (additional)
References 46 Referenced 70
  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater 6, 824–832 (2007). (10.1038/nmat2009) / Nature Mater by M Wuttig (2007)
  2. Raoux, S., Welnic, W. & Ielmini, D. Phase Change Materials and Their Application to Nonvolatile Memories. Chem Rev 110, 240–267 (2010). (10.1021/cr900040x) / Chem Rev by S Raoux (2010)
  3. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater 7, 653–658 (2008). (10.1038/nmat2226) / Nature Mater by K Shportko (2008)
  4. Lencer, D. et al. A map for phase-change materials. Nature Mater 7, 972–977 (2008). (10.1038/nmat2330) / Nature Mater by D Lencer (2008)
  5. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater 3, 703–708 (2004). (10.1038/nmat1215) / Nature Mater by AV Kolobov (2004)
  6. Baker, D., Paesler, M., Lucovsky, G., Agarwal, S. & Taylor, P. Application of Bond Constraint Theory to the Switchable Optical Memory Material Ge2Sb2Te5 . Phys Rev Lett 96, 255501 (2006). (10.1103/PhysRevLett.96.255501) / Phys Rev Lett by D Baker (2006)
  7. Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl Phys Lett 91, 171906 (2007). (10.1063/1.2801626) / Appl Phys Lett by S Caravati (2007)
  8. Akola, J. & Jones, R. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys Rev B 76, 235201 (2007). (10.1103/PhysRevB.76.235201) / Phys Rev B by J Akola (2007)
  9. Mazzarello, R., Caravati, S., Angioletti-Uberti, S., Bernasconi, M. & Parrinello, M. Signature of Tetrahedral Ge in the Raman Spectrum of Amorphous Phase-Change Materials. Phys Rev Lett 104, 085503 (2010). (10.1103/PhysRevLett.104.085503) / Phys Rev Lett by R Mazzarello (2010)
  10. Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl Phys Lett 84, 5240 (2004). (10.1063/1.1764591) / Appl Phys Lett by J Kalb (2004)
  11. Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nature Mater 11, 952–956 (2012). (10.1038/nmat3456) / Nature Mater by W Zhang (2012)
  12. Deringer, V. et al. Bonding nature of local structural motifs in amorphous GeTe. Angew Chem Int Ed 53, 10817–20 (2014). (10.1002/anie.201404223) / Angew Chem Int Ed by V Deringer (2014)
  13. Njoroge, W. K. & Wuttig, M. Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. J Appl Phys 90, 3816 (2001). (10.1063/1.1405141) / J Appl Phys by WK Njoroge (2001)
  14. Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nature Mater 10, 129–134 (2011). (10.1038/nmat2931) / Nature Mater by T Matsunaga (2011)
  15. Zhang, W., Ronneberger, I., Li, Y. & Mazzarello, R. Ab initio investigation of amorphous Sb2Te. Monatsh Chem 145, 97 (2014). (10.1007/s00706-013-0980-0) / Monatsh Chem by W Zhang (2014)
  16. van Pieterson, L., Lankhorst, M. H. R., van Schijndel, M., Kuiper, A. E. T. & Roosen, J. H. J. Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. J Appl Phys 97, 083520 (2005). (10.1063/1.1868860) / J Appl Phys by L van Pieterson (2005)
  17. Hong, S.-H., Bae, B.-J. & Lee, H. Fast switching behavior of nanoscale Ag6In5Sb59Te30 based nanopillar type phase change memory. Nanotech 21, 025703 (2010). (10.1088/0957-4484/21/2/025703) / Nanotech by S-H Hong (2010)
  18. Kalb, J., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J Mater Res 22, 748–754 (2007). (10.1557/jmr.2007.0103) / J Mater Res by J Kalb (2007)
  19. Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nature Mater 11, 279–283 (2012). (10.1038/nmat3275) / Nature Mater by J Orava (2012)
  20. Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nature Comm 4, 2371 (2013). (10.1038/ncomms3371) / Nature Comm by M Salinga (2013)
  21. Sosso, G. C., Behler, J. & Bernasconi, M. Breakdown of Stokes-Einstein relation in the supercooled liquid state of phase change materials. Physica Status Solidi (b) 249, 1880–1885 (2012). (10.1002/pssb.201200355) / Physica Status Solidi (b) by GC Sosso (2012)
  22. Sosso, G. C. et al. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. J Phys Chem Lett 4, 4241–4246 (2013). (10.1021/jz402268v) / J Phys Chem Lett by GC Sosso (2013)
  23. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transitiontransition. Nature 410, 259–267 (2001). (10.1038/35065704) / Nature by PG Debenedetti (2001)
  24. Herwig, F. W. Measurements of viscosity in the systems antimony tellurium and tin tellurium. Z Metallkd 83, 35–39 (1992). / Z Metallkd by FW Herwig (1992)
  25. Im, D. H. et al. A Unified 7.5 nm Dash-Type Confined Cell for High Performance PRAM Device. Proc IEEE Int Electron Devices Meeting, 10.1109/IEDM.2008.4796654 (2008). (10.1109/IEDM.2008.4796654)
  26. Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nature Mater 7, 399–405 (2008). (10.1038/nmat2157) / Nature Mater by J Hegedüs (2008)
  27. Lee, T. H. & Elliott, S. R. Ab Initio Computer Simulation of the Early Stages of Crystallization: Application to Ge2Sb2Te5 Phase-Change Materials. Phys Rev Lett 107, 145702 (2011). (10.1103/PhysRevLett.107.145702) / Phys Rev Lett by TH Lee (2011)
  28. Kalikka, J., Akola, J., Larrucea, J. & Jones, R. O. Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study. Phys Rev B 86, 144113 (2012). (10.1103/PhysRevB.86.144113) / Phys Rev B by J Kalikka (2012)
  29. Micoulaut, M. Communication: Van der Waals corrections for an improved structural description of telluride based materials. J. Chem Phys 138, 061103 (2013). (10.1063/1.4792195) / J. Chem Phys by M Micoulaut (2013)
  30. ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss 104, 93–110 (1996). (10.1039/fd9960400093) / Faraday Discuss by P ten Wolde (1996)
  31. Tang, C. & Harrowell, P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Mater 12, 507–511 (2013). (10.1038/nmat3631) / Nature Mater by C Tang (2013)
  32. Wilson, H. A. On the velocity of solidification and viscosity of super-cooled liquids. Phil Mag 50, 238–250 (1900). (10.1080/14786440009463908) / Phil Mag by HA Wilson (1900)
  33. Frenkel, Y. The Kinetic Theory of Liquids. Oxford University Press (1946).
  34. Thompson, C. V. & Spaepen, F. On the approximation of the free energy change on crystallization. Acta Metall Mater 27, 1855–1859 (1979). (10.1016/0001-6160(79)90076-2) / Acta Metall Mater by CV Thompson (1979)
  35. Naundorf, V., Macht, M.-P., Bakai, A. S. & Lazarev, N. The pre-factor D0 of the diffusion coefficient in amorphous alloys and grain boundaries. J Non-Cryst Solids 250, 679–683 (1999). (10.1016/S0022-3093(99)00159-3) / J Non-Cryst Solids by V Naundorf (1999)
  36. Fielitz, P., Macht, M.-P., Naundorf, V. & Frohberg, G. Diffusion in ZrTiCuNiBe bulk glasses at temperatures around the glass transition. J Non-Cryst Solids 250, 674–678 (1999). (10.1016/S0022-3093(99)00158-1) / J Non-Cryst Solids by P Fielitz (1999)
  37. Ielmini, D. & Bonardi, M. Common signature of many-body thermal excitation in structural relaxation and crystallization of chalcogenide glasses. Appl Phys Lett 94, 091906 (2009). (10.1063/1.3094916) / Appl Phys Lett by D Ielmini (2009)
  38. Cassinerio, M., Ciocchini, N. & Ielmini, D. Evidence for electrically induced drift of threshold voltage in Ge2Sb2Te5 . Appl Phys Lett 103, 023502 (2013). (10.1063/1.4811553) / Appl Phys Lett by M Cassinerio (2013)
  39. Bauer, T., Lunkenheimer, P. & Loidl, A. Cooperativity and the Freezing of Molecular Motion at the Glass Transition. Phys Rev Lett 111, 225702 (2013). (10.1103/PhysRevLett.111.225702) / Phys Rev Lett by T Bauer (2013)
  40. Kühne, T., Krack, M., Mohamed, F. & Parrinello, M. Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Phys Rev Lett 98, 066401 (2007). (10.1103/PhysRevLett.98.066401) / Phys Rev Lett by T Kühne (2007)
  41. Kühne, T., Krack, M. & Parrinello, M. Static and Dynamical Properties of Liquid Water from First Principles by a Novel Car-Parrinello like Approach. J Chem Theory Comp 5, 235–241 (2009). (10.1021/ct800417q) / J Chem Theory Comp by T Kühne (2009)
  42. Frenkel, D. & Smit, B. Understanding Molecular Simulation. Academic Press, San Diego (2002). (10.1016/B978-012267351-1/50005-5)
  43. Jund, P., Caprion, D. & Jullien, R. Is There an Ideal Quenching Rate for an Ideal Glass. Phys Rev Lett 79, 91–94 (1997). (10.1103/PhysRevLett.79.91) / Phys Rev Lett by P Jund (1997)
  44. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k:atomistic simulations of condensed matter systems. Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 15–25 (2014). / Wiley Interdisciplinary Reviews: Computational Molecular Science by J Hutter (2014)
  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys Rev Lett by JP Perdew (1996)
  46. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys Rev B 54, 1703–1710 (1996). (10.1103/PhysRevB.54.1703) / Phys Rev B by S Goedecker (1996)
Dates
Type When
Created 10 years, 10 months ago (Oct. 6, 2014, 5:05 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:14 a.m.)
Indexed 4 months, 2 weeks ago (April 13, 2025, 8:01 p.m.)
Issued 10 years, 10 months ago (Oct. 6, 2014)
Published 10 years, 10 months ago (Oct. 6, 2014)
Published Online 10 years, 10 months ago (Oct. 6, 2014)
Funders 0

None

@article{Zhang_2014, title={How fragility makes phase-change data storage robust: insights from ab initio simulations}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06529}, DOI={10.1038/srep06529}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Zhang, Wei and Ronneberger, Ider and Zalden, Peter and Xu, Ming and Salinga, Martin and Wuttig, Matthias and Mazzarello, Riccardo}, year={2014}, month=oct }