Abstract
AbstractThe remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.
References
36
Referenced
434
-
Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).
(
10.1126/science.287.5453.637
) / Science by MF Yu (2000) -
Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).
(
10.1038/34139
) / Nature by JWG Wildoer (1998) -
Arash, B. & Wang, Q. Detection of gas atoms with carbon nanotubes. Sci. Rep. 3, (2013). 10.1038/srep01782.
(
10.1038/srep01782
) -
Wang, Q. Atomic Transportation via Carbon Nanotubes. Nano Lett. 9, 245–249 (2008).
(
10.1021/nl802829z
) / Nano Lett. by Q Wang (2008) -
Lau, K. T., Gu, C. & Hui, D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites Part B 37, 425–436 (2006).
(
10.1016/j.compositesb.2006.02.020
) / Composites Part B by KT Lau (2006) -
Coleman, J. N., Khan, U., Blau, W. J. & Gun'ko, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006).
(
10.1016/j.carbon.2006.02.038
) / Carbon by JN Coleman (2006) -
Frizzell, C. J. et al. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys. Rev. B 72, 245420 (2005).
(
10.1103/PhysRevB.72.245420
) / Phys. Rev. B by CJ Frizzell (2005) -
Ye, H., Lam, H., Titchenal, N., Gogotsi, Y. & Ko, F. Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers. Appl. Phys. Lett. 85, 1775–1777 (2004).
(
10.1063/1.1787892
) / Appl. Phys. Lett. by H Ye (2004) -
Ajayan, P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12, 750–753 (2000).
(
10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
) / Adv. Mater. by PM Ajayan (2000) -
Thomson, K. E., Jiang, D., Ritchie, R. O. & Mukherjee, A. K. A preservation study of carbon nanotubes in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Appl. Phys. A 89, 651–654 (2007).
(
10.1007/s00339-007-4253-9
) / Appl. Phys. A by KE Thomson (2007) -
Padture, N. P. & Curtin, W. A. Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based composite”. Scr. Mater. 58, 989–990 (2008).
(
10.1016/j.scriptamat.2008.01.038
) / Scr. Mater. by NP Padture (2008) -
Jiang, D. & Mukherjee, A. K. Response to comment on “Effect of sintering temperature on single-wall carbon nanotube toughened alumina-based nanocomposite”. Scr. Mater. 58, 991–993 (2008).
(
10.1016/j.scriptamat.2008.01.037
) / Scr. Mater. by D Jiang (2008) -
Xia, Z. & Curtin, W. A. Pullout forces and friction in multiwall carbon nanotubes. Phys. Rev. B 69, 233408 (2004).
(
10.1103/PhysRevB.69.233408
) / Phys. Rev. B by Z Xia (2004) -
Frankland, S. J. V., Caglar, A., Brenner, D. W. & Griebel, M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. J. Phys. Chem. B 106, 3046–3048 (2002).
(
10.1021/jp015591+
) / J. Phys. Chem. B by SJV Frankland (2002) -
Cadek, M., Coleman, J. N., Barron, V., Hedicke, K. & Blau, W. J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123–5125 (2002).
(
10.1063/1.1533118
) / Appl. Phys. Lett. by M Cadek (2002) -
Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W. & Gates, T. S. The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63, 1655–1661 (2003).
(
10.1016/S0266-3538(03)00059-9
) / Compos. Sci. Technol. by SJV Frankland (2003) -
Zhu, R., Pan, E. & Roy, A. K. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater. Sci. Eng. A 447, 51–57 (2007).
(
10.1016/j.msea.2006.10.054
) / Mater. Sci. Eng. A by R Zhu (2007) -
Han, Y. & Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007).
(
10.1016/j.commatsci.2006.06.011
) / Comput. Mater. Sci. by Y Han (2007) -
Mokashi, V. V., Qian, D. & Liu, Y. A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos. Sci. Technol. 67, 530–540 (2007).
(
10.1016/j.compscitech.2006.08.014
) / Compos. Sci. Technol. by VV Mokashi (2007) -
Bohlén, M. & Bolton, K. Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly (vinylidene fluoride). Comput. Mater. Sci. 68, 73–80 (2013).
(
10.1016/j.commatsci.2012.10.010
) / Comput. Mater. Sci. by M Bohlén (2013) -
Chowdhury, S. C. & Okabe, T. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Composites Part A 38, 747–754 (2007).
(
10.1016/j.compositesa.2006.09.011
) / Composites Part A by SC Chowdhury (2007) -
Gou, J., Minaie, B., Wang, B., Liang, Z. & Zhang, C. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31, 225–236 (2004).
(
10.1016/j.commatsci.2004.03.002
) / Comput. Mater. Sci. by J Gou (2004) -
Liao, K. & Li, S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 79, 4225–4227 (2001).
(
10.1063/1.1428116
) / Appl. Phys. Lett. by K Liao (2001) -
Tsai, J. L., Tzeng, S. H. & Chiu, Y. T. Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Composites Part B 41, 106–115 (2010).
(
10.1016/j.compositesb.2009.06.003
) / Composites Part B by JL Tsai (2010) -
Yang, S., Yu, S., Kyoung, W., Han, D. S. & Cho, M. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53, 623–633 (2012).
(
10.1016/j.polymer.2011.11.052
) / Polymer by S Yang (2012) -
Wang, Q. Buckling of carbon nanotubes wrapped by polyethylene molecules. Phys. Lett. A 375, 624–627 (2011).
(
10.1016/j.physleta.2010.12.005
) / Phys. Lett. A by Q Wang (2011) -
Mori, T. & Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973).
(
10.1016/0001-6160(73)90064-3
) / Acta Metall. by T Mori (1973) -
Benveniste, Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater. 6, 147–157 (1987).
(
10.1016/0167-6636(87)90005-6
) / Mech. Mater. by Y Benveniste (1987) -
Odegard, G. M., Gates, T. S., Wise, K. E., Park, C. & Siochi, E. J. Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003).
(
10.1016/S0266-3538(03)00063-0
) / Compos. Sci. Technol. by GM Odegard (2003) -
Dunn, M. L. & Ledbetter, H. Elastic moduli of composites reinforced by multiphase particles. J. Appl. Mech. 62, 1023–1028 (1995).
(
10.1115/1.2896038
) / J. Appl. Mech. by ML Dunn (1995) -
Tandon, G. P. & Weng, G. J. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos. 5, 327–333 (1984).
(
10.1002/pc.750050413
) / Polym. Compos. by GP Tandon (1984) -
Polyak, B. T. The conjugate gradient method in extreme problems. URSS Comp. Math. Math. Phys. 9, 94–112 (1969).
(
10.1016/0041-5553(69)90035-4
) / URSS Comp. Math. Math. Phys. by BT Polyak (1969) -
Rappe, A. K. & Goddard III, W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).
(
10.1021/j100161a070
) / J. Phys. Chem. by AK Rappe (1991) -
Sun, H. COMPASS: An Ab Initio Forcefield Optimized for Condensed-Phase Application-Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 102, 7338–7364 (1998).
(
10.1021/jp980939v
) / J. Phys. Chem. by H Sun (1998) -
Li, Y. & Mattice, W. L. Atom-based modeling of amorphous 1, 4-cis-polybutadiene. Macromolecules 25, 4942–4947 (1992).
(
10.1021/ma00045a020
) / Macromolecules by Y Li (1992) -
Andersen, H. C. Molecular dynamics at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980).
(
10.1063/1.439486
) / J. Chem. Phys. by HC Andersen (1980)
Dates
Type | When |
---|---|
Created | 10 years, 10 months ago (Oct. 1, 2014, 6:42 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 3:19 a.m.) |
Indexed | 21 hours, 54 minutes ago (Aug. 23, 2025, 1:11 a.m.) |
Issued | 10 years, 10 months ago (Oct. 1, 2014) |
Published | 10 years, 10 months ago (Oct. 1, 2014) |
Published Online | 10 years, 10 months ago (Oct. 1, 2014) |
@article{Arash_2014, title={Mechanical properties of carbon nanotube/polymer composites}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep06479}, DOI={10.1038/srep06479}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Arash, B. and Wang, Q. and Varadan, V. K.}, year={2014}, month=oct }