Crossref
journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
References
40
Referenced
139
-
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nat. Mater. by AK Geim (2007) -
Novoselov, K. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by K Novoselov (2004) -
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
(
10.1016/j.ssc.2008.02.024
) / Solid State Commun. by KI Bolotin (2008) -
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
(
10.1126/science.1157996
) / Science by C Lee (2008) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Tian, H. et al. Single-layer graphene sound-emitting devices: experiments and modeling. Nanoscale 4, 2272–2277 (2012).
(
10.1039/c2nr11572g
) / Nanoscale by H Tian (2012) -
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
(
10.1126/science.1150878
) / Science by X Li (2008) -
Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
(
10.1103/PhysRevLett.100.206803
) / Phys. Rev. Lett. by X Wang (2008) -
Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).
(
10.1103/PhysRevLett.99.216802
) / Phys. Rev. Lett. by EV Castro (2007) -
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
(
10.1038/nature08105
) / Nature by Y Zhang (2009) -
Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).
(
10.1038/nature06016
) / Nature by DA Dikin (2007) -
Tian, H. et al. A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale 5, 890–894 (2013).
(
10.1039/C2NR33455K
) / Nanoscale by H Tian (2013) -
Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005).
(
10.1073/pnas.0502848102
) / Proc. Natl. Acad. Sci. U. S. A. by K Novoselov (2005) -
Radisavljevic, B. & Kis, A. Reply to ‘Measurement of mobility in dual-gated MoS2 transistors’. Nat. Nanotechnol. 8, 147–148 (2013).
(
10.1038/nnano.2013.31
) / Nat. Nanotechnol. by B Radisavljevic (2013) -
Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011).
(
10.1021/nn2024557
) / ACS Nano by Z Yin (2011) -
Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).
(
10.1021/nl301335q
) / Nano Lett. by J Pu (2012) -
Haigh, S. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).
(
10.1038/nmat3386
) / Nat. Mater. by S Haigh (2012) -
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).
(
10.1126/science.1218461
) / Science by L Britnell (2012) -
Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2012).
(
10.1038/nnano.2012.224
) / Nat. Nanotechnol. by T Georgiou (2012) - Zhang, W. et al. Ultrahigh-Gain Phototransistors Based on Graphene-MoS2 Heterostructures. arXiv preprint arXiv:13021230 (2013).
-
Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2012).
(
10.1038/nmat3518
) / Nat. Mater. by WJ Yu (2012) -
Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).
(
10.1038/nnano.2013.219
) / Nat. Nanotechnol. by WJ Yu (2013) -
Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).
(
10.1021/nn3059136
) / ACS Nano by S Bertolazzi (2013) -
Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).
(
10.1038/ncomms2652
) / Nat. Commun. by MS Choi (2013) -
Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013).
(
10.1038/nnano.2013.206
) / Nat. Nanotechnol. by K Roy (2013) -
Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).
(
10.1038/nmat3518
) / Nat. Mater. by WJ Yu (2013) -
Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).
(
10.1103/PhysRevLett.89.106801
) / Phys. Rev. Lett. by S Heinze (2002) -
Larson, J. M. & Snyder, J. P. Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53, 1048–1058 (2006).
(
10.1109/TED.2006.871842
) / IEEE Trans. Electron Devices by JM Larson (2006) -
Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).
(
10.1126/science.1220527
) / Science by H Yang (2012) -
Cheung, K. On the 60 mV/dec@ 300 K limit for MOSFET subthreshold swing. Int. Symp. VLSI Technol., Syst., Appl. (VLSI-TSA), pp.72–73 (2010).
(
10.1109/VTSA.2010.5488941
) -
Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
(
10.1038/nmat3687
) / Nat. Mater. by B Radisavljevic (2013) -
Liu, K.-K. et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 12, 1538–1544 (2012).
(
10.1021/nl2043612
) / Nano Lett. by K-K Liu (2012) -
Wang, H. et al. Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett. 12, 4674–4680 (2012).
(
10.1021/nl302015v
) / Nano Lett. by H Wang (2012) -
Ghatak, S., Pal, A. N. & Ghosh, A. Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano 5, 7707–7712 (2011).
(
10.1021/nn202852j
) / ACS Nano by S Ghatak (2011) -
Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).
(
10.1038/nnano.2008.58
) / Nat. Nanotechnol. by J-H Chen (2008) -
Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 9, 2571–2574 (2009).
(
10.1021/nl900725u
) / Nano Lett. by F Chen (2009) -
Kedzierski, J. et al. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Devices 55, 2078–2085 (2008).
(
10.1109/TED.2008.926593
) / IEEE Trans. Electron Devices by J Kedzierski (2008) -
Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS_ {2} from first principles. Phys. Rev. B 85, 115317 (2012).
(
10.1103/PhysRevB.85.115317
) / Phys. Rev. B by K Kaasbjerg (2012) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).
(
10.1103/PhysRevLett.98.136805
) / Phys. Rev. Lett. by D Jena (2007)
@article{Tian_2014, title={Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep05951}, DOI={10.1038/srep05951}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tian, He and Tan, Zhen and Wu, Can and Wang, Xiaomu and Mohammad, Mohammad Ali and Xie, Dan and Yang, Yi and Wang, Jing and Li, Lain-Jong and Xu, Jun and Ren, Tian-Ling}, year={2014}, month=aug }