Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Tian, H., Tan, Z., Wu, C., Wang, X., Mohammad, M. A., Xie, D., Yang, Y., Wang, J., Li, L.-J., Xu, J., & Ren, T.-L. (2014). Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions. Scientific Reports, 4(1).

Authors 11
  1. He Tian (first)
  2. Zhen Tan (additional)
  3. Can Wu (additional)
  4. Xiaomu Wang (additional)
  5. Mohammad Ali Mohammad (additional)
  6. Dan Xie (additional)
  7. Yi Yang (additional)
  8. Jing Wang (additional)
  9. Lain-Jong Li (additional)
  10. Jun Xu (additional)
  11. Tian-Ling Ren (additional)
References 40 Referenced 139
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nat. Mater. by AK Geim (2007)
  2. Novoselov, K. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by K Novoselov (2004)
  3. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). (10.1016/j.ssc.2008.02.024) / Solid State Commun. by KI Bolotin (2008)
  4. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). (10.1126/science.1157996) / Science by C Lee (2008)
  5. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). (10.1021/nl0731872) / Nano Lett. by AA Balandin (2008)
  6. Tian, H. et al. Single-layer graphene sound-emitting devices: experiments and modeling. Nanoscale 4, 2272–2277 (2012). (10.1039/c2nr11572g) / Nanoscale by H Tian (2012)
  7. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by X Li (2008)
  8. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008). (10.1103/PhysRevLett.100.206803) / Phys. Rev. Lett. by X Wang (2008)
  9. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). (10.1103/PhysRevLett.99.216802) / Phys. Rev. Lett. by EV Castro (2007)
  10. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  11. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). (10.1038/nature06016) / Nature by DA Dikin (2007)
  12. Tian, H. et al. A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale 5, 890–894 (2013). (10.1039/C2NR33455K) / Nanoscale by H Tian (2013)
  13. Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl. Acad. Sci. U. S. A. by K Novoselov (2005)
  14. Radisavljevic, B. & Kis, A. Reply to ‘Measurement of mobility in dual-gated MoS2 transistors’. Nat. Nanotechnol. 8, 147–148 (2013). (10.1038/nnano.2013.31) / Nat. Nanotechnol. by B Radisavljevic (2013)
  15. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011). (10.1021/nn2024557) / ACS Nano by Z Yin (2011)
  16. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). (10.1021/nl301335q) / Nano Lett. by J Pu (2012)
  17. Haigh, S. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012). (10.1038/nmat3386) / Nat. Mater. by S Haigh (2012)
  18. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). (10.1126/science.1218461) / Science by L Britnell (2012)
  19. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2012). (10.1038/nnano.2012.224) / Nat. Nanotechnol. by T Georgiou (2012)
  20. Zhang, W. et al. Ultrahigh-Gain Phototransistors Based on Graphene-MoS2 Heterostructures. arXiv preprint arXiv:13021230 (2013).
  21. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2012). (10.1038/nmat3518) / Nat. Mater. by WJ Yu (2012)
  22. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013). (10.1038/nnano.2013.219) / Nat. Nanotechnol. by WJ Yu (2013)
  23. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013). (10.1021/nn3059136) / ACS Nano by S Bertolazzi (2013)
  24. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). (10.1038/ncomms2652) / Nat. Commun. by MS Choi (2013)
  25. Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013). (10.1038/nnano.2013.206) / Nat. Nanotechnol. by K Roy (2013)
  26. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013). (10.1038/nmat3518) / Nat. Mater. by WJ Yu (2013)
  27. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002). (10.1103/PhysRevLett.89.106801) / Phys. Rev. Lett. by S Heinze (2002)
  28. Larson, J. M. & Snyder, J. P. Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53, 1048–1058 (2006). (10.1109/TED.2006.871842) / IEEE Trans. Electron Devices by JM Larson (2006)
  29. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012). (10.1126/science.1220527) / Science by H Yang (2012)
  30. Cheung, K. On the 60 mV/dec@ 300 K limit for MOSFET subthreshold swing. Int. Symp. VLSI Technol., Syst., Appl. (VLSI-TSA), pp.72–73 (2010). (10.1109/VTSA.2010.5488941)
  31. Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  32. Liu, K.-K. et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 12, 1538–1544 (2012). (10.1021/nl2043612) / Nano Lett. by K-K Liu (2012)
  33. Wang, H. et al. Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett. 12, 4674–4680 (2012). (10.1021/nl302015v) / Nano Lett. by H Wang (2012)
  34. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano 5, 7707–7712 (2011). (10.1021/nn202852j) / ACS Nano by S Ghatak (2011)
  35. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). (10.1038/nnano.2008.58) / Nat. Nanotechnol. by J-H Chen (2008)
  36. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 9, 2571–2574 (2009). (10.1021/nl900725u) / Nano Lett. by F Chen (2009)
  37. Kedzierski, J. et al. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Devices 55, 2078–2085 (2008). (10.1109/TED.2008.926593) / IEEE Trans. Electron Devices by J Kedzierski (2008)
  38. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS_ {2} from first principles. Phys. Rev. B 85, 115317 (2012). (10.1103/PhysRevB.85.115317) / Phys. Rev. B by K Kaasbjerg (2012)
  39. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotechnol. by B Radisavljevic (2011)
  40. Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007). (10.1103/PhysRevLett.98.136805) / Phys. Rev. Lett. by D Jena (2007)
Dates
Type When
Created 11 years ago (Aug. 11, 2014, 5:12 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 2:56 a.m.)
Indexed 3 months, 2 weeks ago (May 14, 2025, 4:46 a.m.)
Issued 11 years ago (Aug. 11, 2014)
Published 11 years ago (Aug. 11, 2014)
Published Online 11 years ago (Aug. 11, 2014)
Funders 0

None

@article{Tian_2014, title={Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep05951}, DOI={10.1038/srep05951}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tian, He and Tan, Zhen and Wu, Can and Wang, Xiaomu and Mohammad, Mohammad Ali and Xie, Dan and Yang, Yi and Wang, Jing and Li, Lain-Jong and Xu, Jun and Ren, Tian-Ling}, year={2014}, month=aug }