Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Liu, T., Zhang, Y., Cai, J. W., & Pan, H. Y. (2014). Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Scientific Reports, 4(1).

Authors 4
  1. T. Liu (first)
  2. Y. Zhang (additional)
  3. J. W. Cai (additional)
  4. H. Y. Pan (additional)
References 31 Referenced 164
  1. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210–215 (2006). (10.1038/nmat1595) / Nat. Mater. by S Mangin (2006)
  2. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010). (10.1038/nmat2804) / Nat. Mater. by S Ikeda (2010)
  3. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). (10.1016/0304-8853(96)00062-5) / J. Magn. Magn. Mater. by JC Slonczewski (1996)
  4. Sun, J. Z. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 570–578 (2000). (10.1103/PhysRevB.62.570) / Phys. Rev. B by JZ Sun (2000)
  5. Worledge, D. C. et al. Spin torque switching of perpendicular Ta/CoFeB/MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011). (10.1063/1.3536482) / Appl. Phys. Lett. by DC Worledge (2011)
  6. Nishimura, N. et al. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91, 5246–5249 (2002). (10.1063/1.1459605) / J. Appl. Phys. by N Nishimura (2002)
  7. Ohmori, H., Hatori, T. & Nakagawa, S. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature. J. Appl. Phys. 103, 07A911 (2008). (10.1063/1.2840016) / J. Appl. Phys. by H Ohmori (2008)
  8. Yoshikawa, M. et al. Tunnel magnetoresistance over 100% in MgO-based magnetic tunnel junction films with perpendicular magnetic L10-FePt electrodes. IEEE Trans. Magn. 44, 2573–2576 (2008). (10.1109/TMAG.2008.2003059) / IEEE Trans. Magn. by M Yoshikawa (2008)
  9. Kim, G. et al. Tunneling magnetoresistance of magnetic tunnel junctions using perpendicular magnetization L10-CoPt electrodes. Appl. Phys. Lett. 92, 172502 (2008). (10.1063/1.2913163) / Appl. Phys. Lett. by G Kim (2008)
  10. Yakushiji, K. et al. Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 97, 232508 (2010). (10.1063/1.3524230) / Appl. Phys. Lett. by K Yakushiji (2010)
  11. Carvello, B. et al. Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy. Appl. Phys. Lett. 92, 102508 (2008). (10.1063/1.2894198) / Appl. Phys. Lett. by B Carvello (2008)
  12. Wang, W. G. et al. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012). (10.1038/nmat3171) / Nat. Mater. by WG Wang (2012)
  13. Wang, W. G. et al. Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB. Appl. Phys. Lett. 99, 102502 (2011). (10.1063/1.3634026) / Appl. Phys. Lett. by WG Wang (2011)
  14. Meng, H. et al. Annealing temperature window for tunneling magnetoresistance and spin torque switching in CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions. J. Appl. Phys. 110, 103915 (2011). (10.1063/1.3662893) / J. Appl. Phys. by H Meng (2011)
  15. Gan, H. D. et al. Origin of the collapse of tunnel magnetoresistance at high annealing temperature in CoFeB/MgO perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 99, 252507 (2011). (10.1063/1.3671669) / Appl. Phys. Lett. by HD Gan (2011)
  16. Miyakawa, N., Worledge, D. C. & Kita, K. Impact of Ta Diffusion on the Perpendicular Magnetic Anisotropy of Ta/CoFeB/MgO. IEEE Magn. Lett. 4, 1000104 (2013). (10.1109/LMAG.2013.2240266) / IEEE Magn. Lett. by N Miyakawa (2013)
  17. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004). (10.1038/nmat1256) / Nature Mater. by SSP Parkin (2004)
  18. Suemitsu, K. et al. Improvement of Thermal Stability of Magnetoresistive Random Access Memory Device with SiN Protective Film Deposited by High-Density Plasma Chemical Vapor Deposition. Jpn. J. Appl. Phys. 47, 2714 (2008). (10.1143/JJAP.47.2714) / Jpn. J. Appl. Phys. by K Suemitsu (2008)
  19. Liu, T., Cai, J. W. & Sun, L. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer. AIP Advances 2, 032151 (2012). (10.1063/1.4748337) / AIP Advances by T Liu (2012)
  20. Yang, H. X. et al. First-principles investigation of the very large perpendicular magnetic anisotropy at Fe/MgO and Co/MgO interfaces. Phys. Rev. B 84, 054401 (2011). (10.1103/PhysRevB.84.054401) / Phys. Rev. B by HX Yang (2011)
  21. Worledge, D. C. et al. Spin torque switching of perpendicular Ta/CoFeB/MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011). (10.1063/1.3536482) / Appl. Phys. Lett. by DC Worledge (2011)
  22. Shiota, Y. et al. Opposite signs of voltage-induced perpendicular magnetic anisotropy change in CoFeB/MgO junctions with different underlayers. Appl. Phys. Lett. 103, 082410 (2013). (10.1063/1.4819199) / Appl. Phys. Lett. by Y Shiota (2013)
  23. Alzate, J. G. et al. Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO/CoFeB/Ta magnetic tunnel junctions. Appl. Phys. Lett. 104, 112410 (2014). (10.1063/1.4869152) / Appl. Phys. Lett. by JG Alzate (2014)
  24. Hindmarch, A. T. et al. Zirconium as a boron sink in crystalline CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Express 4, 013002 (2011). (10.1143/APEX.4.013002) / Appl. Phys. Express by AT Hindmarch (2011)
  25. Pai, C. F. et al. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Appl. Phys. Lett. 104, 082407 (2014). (10.1063/1.4866965) / Appl. Phys. Lett. by CF Pai (2014)
  26. Niessen, A. K. & Deboer, F. R. The enthalpy of formation of solid borides, carbides, nitrides, silicides and phosphides of transition and noble metals. J. Less-Common Met. 82, 75 (1981). (10.1016/0022-5088(81)90200-9) / J. Less-Common Met. by AK Niessen (1981)
  27. Yamanouchi, M. et al. Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure. J. Appl. Phys. 109, 07C712 (2011). (10.1063/1.3554204) / J. Appl. Phys. by M Yamanouchi (2011)
  28. Moghadam, N. Y. & Stocks, G. M. Magnetic structure of Ni-rich Ni1−xTax and permalloy- Ta alloys. Phys. Rev. B 71, 134421 (2005). (10.1103/PhysRevB.71.134421) / Phys. Rev. B by NY Moghadam (2005)
  29. Kowalewski, M. et al. The effect of Ta on the magnetic thickness of permalloy (Ni81Fe19) films. J. Appl. Phys. 87, 5732 (2000). (10.1063/1.372504) / J. Appl. Phys. by M Kowalewski (2000)
  30. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008). (10.1063/1.2976435) / Appl. Phys. Lett. by S Ikeda (2008)
  31. Lide, D. R. CRC Handbook of Chemistry and Physics 81st, Sec.5 (CRC, Boca Raton, FL, 2000).
Dates
Type When
Created 11 years ago (Aug. 1, 2014, 5:58 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:05 a.m.)
Indexed 32 minutes ago (Aug. 27, 2025, 2:08 a.m.)
Issued 11 years ago (July 31, 2014)
Published 11 years ago (July 31, 2014)
Published Online 11 years ago (July 31, 2014)
Funders 0

None

@article{Liu_2014, title={Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep05895}, DOI={10.1038/srep05895}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Liu, T. and Zhang, Y. and Cai, J. W. and Pan, H. Y.}, year={2014}, month=jul }