Abstract
AbstractThe investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an "Equation missing" layered structure to an "Equation missing" rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from "Equation missing"3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.
References
32
Referenced
127
-
Nam, K.-W. et al. Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 23, 1047–1063 (2013).
(
10.1002/adfm.201200693
) / Adv. Funct. Mater. by K-W Nam (2013) -
Thackeray, M. M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112 (2007).
(
10.1039/b702425h
) / J. Mater. Chem. by MM Thackeray (2007) - Batteries for Advanced Transportation Technologies,. http://batt.lbl.gov/, (2014) Date of access: 10/06/2014.
- Department of Energy: Vehicle Technologies Office: Batteries,. http://energy.gov/eere/vehicles/vehicle-technologies-office-batteries, (2014) Date of access: 10/06/2014.
-
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 10.1038/ncomms4529 (2014).
(
10.1038/ncomms4529
) / Nat. Commun. by F Lin (2014) -
Lin, F. et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 5, 3358 10.1038/ncomms4358 (2014).
(
10.1038/ncomms4358
) / Nat. Commun. by F Lin (2014) -
Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries. Science. 342, 716–720 (2013).
(
10.1126/science.1241882
) / Science. by M Ebner (2013) -
Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).
(
10.1038/nmat3784
) / Nat. Mater. by Y-Y Hu (2013) -
Demeaux, J. et al. On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel. Phys. Chem. Chem. Phys. 15, 20900–20910 (2013).
(
10.1039/c3cp53941e
) / Phys. Chem. Chem. Phys. by J Demeaux (2013) -
Kam, K. C., Mehta, A., Heron, J. T. & Doeff, M. M. Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials. J. Electrochem. Soc. 159, A1383–A1392 (2012).
(
10.1149/2.060208jes
) / J. Electrochem. Soc. by KC Kam (2012) -
Conry, T. E., Mehta, A., Cabana, J. & Doeff, M. M. Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi045 Mn0.45 Co0.1−y Aly O2 Positive Electrode Materials for Li-ion Batteries. Chem. Mater. 24, 3307–3317 (2012).
(
10.1021/cm3011937
) / Chem. Mater. by TE Conry (2012) -
Boulineau, A., Simonin, L., Colin, J.-F., Bourbon, C. & Patoux, S. First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–63 (2013).
(
10.1021/nl4019275
) / Nano Lett. by A Boulineau (2013) -
Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223 (2011).
(
10.1039/c1ee01131f
) / Energy Environ. Sci. by B Xu (2011) -
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–64 (2013).
(
10.1021/nl3044508
) / Nano Lett. by MT McDowell (2013) -
Li, J. et al. An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes. Adv. Energy Mater. 3, 1275–1278 (2013).
(
10.1002/aenm201300378
) / Adv. Energy Mater. by J Li (2013) -
Jung, Y. S. et al. Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li-Ion Batteries. Adv. Energy Mater. 3, 213–219 (2013).
(
10.1002/aenm.201200370
) / Adv. Energy Mater. by YS Jung (2013) -
Schroder, K. W., Celio, H., Webb, L. J. & Stevenson, K. J. Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions. J. Phys. Chem. C 116, 19737–19747 (2012).
(
10.1021/jp307372m
) / J. Phys. Chem. C by KW Schroder (2012) -
Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).
(
10.1016/j.electacta.2010.05.072
) / Electrochim. Acta by P Verma (2010) -
Gu, M. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–7 (2013).
(
10.1021/nn305065u
) / ACS Nano by M Gu (2013) -
Jung, S.-K. et al. Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries. Adv. Energy Mater. 4, 1300787 (2013).
(
10.1002/aenm.201300787
) / Adv. Energy Mater. by S-K Jung (2013) -
Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).
(
10.1016/j.micron.2004.02.003
) / Micron by RF Egerton (2004) -
Ota, H., Sakata, Y., Inoue, A. & Yamaguchi, S. Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode. J. Electrochem. Soc. 151, A1659 (2004).
(
10.1149/1.1785795
) / J. Electrochem. Soc. by H Ota (2004) -
Jiang, N. & Spence, J. C. H. On the dose-rate threshold of beam damage in TEM. Ultramicroscopy 113, 77–82 (2012).
(
10.1016/j.ultramic.2011.11.016
) / Ultramicroscopy by N Jiang (2012) -
Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 . J. Am. Chem. Soc. 128, 8694–8 (2006).
(
10.1021/ja062027+
) / J. Am. Chem. Soc. by AR Armstrong (2006) -
Lin, F. et al. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 5, 301–9 (2013).
(
10.1021/am302097b
) / ACS Appl. Mater. Interfaces by F Lin (2013) -
Lin, F. et al. Origin of electrochromism in high-performing nanocomposite nickel oxide. ACS Appl. Mater. Interfaces 5, 3643–9 (2013).
(
10.1021/am400105y
) / ACS Appl. Mater. Interfaces by F Lin (2013) -
Van Veenendaal, M. & Sawatzky, G. Doping dependence of Ni 2p x-ray-absorption spectra of MxNi1−xO (M = Li,Na). Phys. Rev. B 50, 11326–11331 (1994).
(
10.1103/PhysRevB.50.11326
) / Phys. Rev. B by M Van Veenendaal (1994) -
Soriano, L. et al. The electronic structure of mesoscopic NiO particles. Chem. Phys. Lett. 208, 460–464 (1993).
(
10.1016/0009-2614(93)87173-Z
) / Chem. Phys. Lett. by L Soriano (1993) -
Yoon, W.-S. et al. Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 127, 17479–17487 (2005).
(
10.1021/ja0530568
) / J. Am. Chem. Soc. by W-S Yoon (2005) -
Mkhoyan, K., Silcox, J., Ellison, A., Ast, D. & Dieckmann, R. Full Recovery of Electron Damage in Glass at Ambient Temperatures. Phys. Rev. Lett. 96, 205506 (2006).
(
10.1103/PhysRevLett.96.205506
) / Phys. Rev. Lett. by K Mkhoyan (2006) -
Karuppasamy, M., Karimi Nejadasl, F., Vulovic, M., Koster, A. J. & Ravelli, R. B. G. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. J. Synchrotron Radiat. 18, 398–412 (2011).
(
10.1107/S090904951100820X
) / J. Synchrotron Radiat. by M Karuppasamy (2011)
Dates
Type | When |
---|---|
Created | 11 years, 1 month ago (July 16, 2014, 5:15 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 2:59 a.m.) |
Indexed | 1 day, 18 hours ago (Aug. 19, 2025, 6:45 a.m.) |
Issued | 11 years, 1 month ago (July 16, 2014) |
Published | 11 years, 1 month ago (July 16, 2014) |
Published Online | 11 years, 1 month ago (July 16, 2014) |
@article{Lin_2014, title={Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep05694}, DOI={10.1038/srep05694}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Lin, Feng and Markus, Isaac M. and Doeff, Marca M. and Xin, Huolin L.}, year={2014}, month=jul }