Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Yang, L., Cui, X., Zhang, J., Wang, K., Shen, M., Zeng, S., Dayeh, S. A., Feng, L., & Xiang, B. (2014). Lattice strain effects on the optical properties of MoS2 nanosheets. Scientific Reports, 4(1).

Authors 9
  1. Lei Yang (first)
  2. Xudong Cui (additional)
  3. Jingyu Zhang (additional)
  4. Kan Wang (additional)
  5. Meng Shen (additional)
  6. Shuangshuang Zeng (additional)
  7. Shadi A. Dayeh (additional)
  8. Liang Feng (additional)
  9. Bin Xiang (additional)
References 39 Referenced 344
  1. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). (10.1021/nl403661s) / Nano Lett. by D Voiry (2013)
  2. Ataca, C. & Ciraci, S. Dissociation of H2O at the vacancies of single-layer MoS2 . Phys. Rev. B 10.1103/PhysRevB.85.195410 (2012).
  3. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). (10.1038/nmat3439) / Nat. Mater. by J Kibsgaard (2012)
  4. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008). (10.1021/ja8007825) / J. Am. Chem. Soc. by X Zong (2008)
  5. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotech. by B Radisavljevic (2011)
  6. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011). (10.1021/nn203715c) / ACS Nano by B Radisavljevic (2011)
  7. Nam, H. et al. MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. ACS Nano 7, 5870–5881 (2013). (10.1021/nn401093u) / ACS Nano by H Nam (2013)
  8. Zhou, G. et al. A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26, 625–631 (2014). (10.1002/adma.201302877) / Adv. Mater. by G Zhou (2014)
  9. Cao, X. et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9, 3433–3438 (2013). (10.1002/smll.201202697) / Small by X Cao (2013)
  10. Late, D. J. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). (10.1021/nn400026u) / ACS Nano by DJ Late (2013)
  11. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotech. 8, 497–501 (2013). (10.1038/nnano.2013.100) / Nat. Nanotech. by O Lopez-Sanchez (2013)
  12. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nanotech. by QH Wang (2012)
  13. Kam, K. K. & Parklnclon, B. A. Detailed photocurrent spectroscopy of the semiconducting group transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982). (10.1021/j100393a010) / J. Phys. Chem. by KK Kam (1982)
  14. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 10.1103/PhysRevLett.105.136805 (2010).
  15. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  16. Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967). (10.1103/PhysRev.163.743) / Phys. Rev. by R Fivaz (1967)
  17. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011). (10.1021/nn203879f) / ACS Nano by S Bertolazzi (2011)
  18. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012). (10.1021/nl301485q) / Nano Lett. by HS Lee (2012)
  19. Yu, Y. et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 10.1038/srep01866 (2013). (10.1038/srep01866)
  20. Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013). (10.1038/nmat3633) / Nat. Mater. by AM Zande (2013)
  21. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013). (10.1021/nl4014748) / Nano Lett. by HJ Conley (2013)
  22. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013). (10.1021/nl4013166) / Nano Lett. by K He (2013)
  23. Hui, Y. Y. et al. Exceptional tenability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013). (10.1021/nn4024834) / ACS Nano by YY Hui (2013)
  24. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013). (10.1021/nl402875m) / Nano Lett. by A Castellanos-Gomez (2013)
  25. Rice, C., Young, R. J., Zan, R. & Bangert, U. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 . Phys. Rev. B 10.1103/PhysRevB.87.081307 (2013).
  26. Kittel, C. Introduction to Solid State Physics Ch.2, 38–39 (John Wiley & Sons, Inc., New York London, 1968).
  27. Liu, Y. et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013). (10.1021/nn400644t) / ACS Nano by Y Liu (2013)
  28. Wang, X., Feng, H., Wu, Y. & Jiao, L. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013). (10.1021/ja4013485) / J. Am. Chem. Soc. by X Wang (2013)
  29. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 10.1103/PhysRevB.83.245213 (2011).
  30. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by raman spectroscopy: G peak splitting, Grüneisen parameters and sample orientation. Phys. Rev. B 79, 205433–205440 (2009). (10.1103/PhysRevB.79.205433) / Phys. Rev. B by TMG Mohiuddin (2009)
  31. Ghosh, P. N. & Maiti, C. R. Interlayer force and Davydov splitting in 2H-MoS2 . Phys. Rev. B 28, 2237–2239 (1983). (10.1103/PhysRevB.28.2237) / Phys. Rev. B by PN Ghosh (1983)
  32. Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 10.1103/PhysRevB.84.155413 (2011).
  33. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007). (10.1021/jp075424v) / J. Phys. Chem. C by T Li (2007)
  34. Lee, C. et al. Anomalous lattice vibrations of single and few layer MoS2 . ACS Nano 4, 2695–2700 (2010). (10.1021/nn1003937) / ACS Nano by C Lee (2010)
  35. Kuroda, N. & Nishina, Y. Davydov splitting of degenerate lattice modes in the layer compound GaS. Phys. Rev. B 19, 1312–1315 (1979). (10.1103/PhysRevB.19.1312) / Phys. Rev. B by N Kuroda (1979)
  36. Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V. & Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 . Nano Res. 5, 43–48 (2012). (10.1007/s12274-011-0183-0) / Nano Res. by E Scalise (2012)
  37. Peelaers, H. & Van de Walle, C. G. Effects of strain on band structure and effective masses in MoS2 . Phys. Rev. B 86, 241401–241405 (2012). (10.1103/PhysRevB.86.241401) / Phys. Rev. B by H Peelaers (2012)
  38. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409–115412 (2009). (10.1103/PhysRevB.79.115409) / Phys. Rev. B by S Lebègue (2009)
  39. Tongay, S. et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 . Nano lett. 12, 5576–5580 (2012). (10.1021/nl302584w) / Nano lett. by S Tongay (2012)
Dates
Type When
Created 11 years, 1 month ago (July 10, 2014, 5:19 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:04 a.m.)
Indexed 1 day, 2 hours ago (Aug. 20, 2025, 8:25 a.m.)
Issued 11 years, 1 month ago (July 10, 2014)
Published 11 years, 1 month ago (July 10, 2014)
Published Online 11 years, 1 month ago (July 10, 2014)
Funders 0

None

@article{Yang_2014, title={Lattice strain effects on the optical properties of MoS2 nanosheets}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep05649}, DOI={10.1038/srep05649}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Yang, Lei and Cui, Xudong and Zhang, Jingyu and Wang, Kan and Shen, Meng and Zeng, Shuangshuang and Dayeh, Shadi A. and Feng, Liang and Xiang, Bin}, year={2014}, month=jul }