Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Wang, K.-C., Jeng, J.-Y., Shen, P.-S., Chang, Y.-C., Diau, E. W.-G., Tsai, C.-H., Chao, T.-Y., Hsu, H.-C., Lin, P.-Y., Chen, P., Guo, T.-F., & Wen, T.-C. (2014). p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific Reports, 4(1).

Authors 12
  1. Kuo-Chin Wang (first)
  2. Jun-Yuan Jeng (additional)
  3. Po-Shen Shen (additional)
  4. Yu-Cheng Chang (additional)
  5. Eric Wei-Guang Diau (additional)
  6. Cheng-Hung Tsai (additional)
  7. Tzu-Yang Chao (additional)
  8. Hsu-Cheng Hsu (additional)
  9. Pei-Ying Lin (additional)
  10. Peter Chen (additional)
  11. Tzung-Fang Guo (additional)
  12. Ten-Chin Wen (additional)
References 51 Referenced 380
  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). (10.1021/ja809598r) / J. Am. Chem. Soc. by A Kojima (2009)
  2. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011). (10.1039/c1nr10867k) / Nanoscale by J-H Im (2011)
  3. Kim, H.-S. et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2, 591 (2012). (10.1038/srep00591) / Sci. Rep. by H-S Kim (2012)
  4. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643–647 (2012). (10.1126/science.1228604) / Science by MM Lee (2012)
  5. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful, Efficient and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13, 1764–1769 (2013). (10.1021/nl400349b) / Nano Lett. by JH Noh (2013)
  6. Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013). (10.1021/jz4020162) / J. Phys. Chem. Lett. by HJ Snaith (2013)
  7. Jeng, J.-Y. et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 25, 3727–3732 (2013). (10.1002/adma.201301327) / Adv. Mater. by J-Y Jeng (2013)
  8. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4, 2761 (2013). (10.1038/ncomms3761) / Nat Commun by P Docampo (2013)
  9. Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014). (10.1039/C3EE43161D) / Energy Environ. Sci. by S Sun (2014)
  10. Ku, Z., Rong, Y., Xu, M., Liu, T. & Han, H. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep. 3, 3132 (2013). (10.1038/srep03132) / Sci. Rep. by Z Ku (2013)
  11. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). (10.1038/nature12340) / Nature by J Burschka (2013)
  12. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). (10.1038/nature12509) / Nature by M Liu (2013)
  13. Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014). (10.1038/nphoton.2013.342) / Nature Photon. by D Liu (2014)
  14. Park, N.-G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 4, 2423–2427 (2013). (10.1021/jz400892a) / J. Phys. Chem. Lett. by N-G Park (2013)
  15. Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341–344 (2013). (10.1126/science.1243982) / Science by SD Stranks (2013)
  16. Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344–347 (2013). (10.1126/science.1243167) / Science by G Xing (2013)
  17. Gonzalez-Pedro, V. et al. General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Lett. 14, 888–893 (2014). (10.1021/nl404252e) / Nano Lett. by V Gonzalez-Pedro (2014)
  18. Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 487–492 (2013). (10.1038/nphoton.2013.80) / Nature Photon. by JH Heo (2013)
  19. Kumar, M. H. et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Comm. 49, 11089–11091 (2013). (10.1039/c3cc46534a) / Chem. Comm. by MH Kumar (2013)
  20. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological Control for High Performance, Solution- Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 24, 151–157 (2014). (10.1002/adfm.201302090) / Adv. Funct. Mater. by GE Eperon (2014)
  21. Chen, Q. et al. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. (2013). (10.1021/ja411509g)
  22. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014). (10.1038/nphoton.2013.341) / Nature Photon. by O Malinkiewicz (2014)
  23. Qiu, J. et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013). (10.1039/c3nr00218g) / Nanoscale by J Qiu (2013)
  24. Kim, H.-S. et al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 13, 2412–2417 (2013). (10.1021/nl400286w) / Nano Lett. by H-S Kim (2013)
  25. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). (10.1021/ja307789s) / J. Am. Chem. Soc. by L Etgar (2012)
  26. Laban, W. A. & Etgar, L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013). (10.1039/c3ee42282h) / Energy Environ. Sci. by WA Laban (2013)
  27. Bi, D. et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5, 11686–11691 (2013). (10.1039/c3nr01542d) / Nanoscale by D Bi (2013)
  28. Conings, B. et al. Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Adv. Mater., 10.1002/adma.201304803 (2013). (10.1002/chin.201425013)
  29. Cai, B., Xing, Y., Yang, Z., Zhang, W.-H. & Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013). (10.1039/c3ee40343b) / Energy Environ. Sci. by B Cai (2013)
  30. Abrusci, A. et al. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 13, 3124–3128 (2013). (10.1021/nl401044q) / Nano Lett. by A Abrusci (2013)
  31. Noh, J. H. et al. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 1, 11842–11847 (2013). (10.1039/c3ta12681a) / J. Mater. Chem. A by JH Noh (2013)
  32. Jeon, N. J. et al. Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. J. Am. Chem. Soc. 135, 19087–19090 (2013). (10.1021/ja410659k) / J. Am. Chem. Soc. by NJ Jeon (2013)
  33. Di Giacomo, F. et al. High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources 251, 152–156 (2014). (10.1016/j.jpowsour.2013.11.053) / J. Power Sources by F Di Giacomo (2014)
  34. Christians, J. A., Fung, R. C. M. & Kamat, P. V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 136, 758–764 (2014). (10.1021/ja411014k) / J. Am. Chem. Soc. by JA Christians (2014)
  35. Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105, 2783–2787 (2008). (10.1073/pnas.0711990105) / PNAS by MD Irwin (2008)
  36. Nattestad, A. et al. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Mater. 9, 31–35 (2010). (10.1038/nmat2588) / Nature Mater. by A Nattestad (2010)
  37. Powar, S. et al. Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes. Angew. Chem. Int. Ed. 52, 602–605 (2013). (10.1002/anie.201206219) / Angew. Chem. Int. Ed. by S Powar (2013)
  38. Gibson, E. A. et al. A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Angew. Chem. Int. Ed. 48, 4402–4405 (2009). (10.1002/anie.200900423) / Angew. Chem. Int. Ed. by EA Gibson (2009)
  39. Ratcliff, E. L. et al. Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity. Adv. Energy Mater. 3, 647–656 (2013). (10.1002/aenm.201200669) / Adv. Energy Mater. by EL Ratcliff (2013)
  40. Odobel, F. & Pellegrin, Y. Recent Advances in the Sensitization of Wide-Band-Gap Nanostructured p-Type Semiconductors. Photovoltaic and Photocatalytic Applications. J. Phys. Chem. Lett. 4, 2551–2564 (2013). (10.1021/jz400861v) / J. Phys. Chem. Lett. by F Odobel (2013)
  41. Garcia, A. et al. Improvement of Interfacial Contacts for New Small- Molecule Bulk-Heterojunction Organic Photovoltaics. Adv. Mater. 24, 5368–5373 (2012). (10.1002/adma.201200963) / Adv. Mater. by A Garcia (2012)
  42. Manders, J. R. et al. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 23, 2993–3001 (2013). (10.1002/adfm.201202269) / Adv. Funct. Mater. by JR Manders (2013)
  43. Jeng, J.-Y. et al. Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 10.1002/adma.201306217 (2014). (10.1002/adma.201306217)
  44. Mühlbacher, D. et al. High Photovoltaic Performance of a Low-Bandgap Polymer. Adv. Mater. 18, 2884–2889 (2006). (10.1002/adma.200600160) / Adv. Mater. by D Mühlbacher (2006)
  45. Wienk, M. M., Turbiez, M., Gilot, J. & Janssen, R. A. J. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Adv. Mater. 20, 2556–2560 (2008). (10.1002/adma.200800456) / Adv. Mater. by MM Wienk (2008)
  46. Liang, Y. et al. Development of New Semiconducting Polymers for High Performance Solar Cells. J. Am. Chem. Soc. 131, 56–57 (2008). (10.1021/ja808373p) / J. Am. Chem. Soc. by Y Liang (2008)
  47. Huang, F. et al. Development of New Conjugated Polymers with Donor−π-Bridge−Acceptor Side Chains for High Performance Solar Cells. J. Am. Chem. Soc. 131, 13886–13887 (2009). (10.1021/ja9066139) / J. Am. Chem. Soc. by F Huang (2009)
  48. Boschloo, G. & Hagfeldt, A. Spectroelectrochemistry of Nanostructured NiO. J. Phys. Chem. B 105, 3039–3044 (2001). (10.1021/jp003499s) / J. Phys. Chem. B by G Boschloo (2001)
  49. You, J. et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. Acs Nano 8, 1674–1680 (2014). (10.1021/nn406020d) / Acs Nano by J You (2014)
  50. Chiang, Y.-F. et al. High voltage and efficient bilayer heterojunction solar cells based on organic-inorganic hybrid perovskite absorber with low-cost flexible substrate. Phys. Chem. Chem. Phys. 16, 6033–6040 (2014). (10.1039/C4CP00298A) / Phys. Chem. Chem. Phys. by Y-F Chiang (2014)
  51. Borgström, M. et al. Sensitized Hole Injection of Phosphorus Porphyrin into NiO: Toward New Photovoltaic Devices. J. Phys. Chem. B 109, 22928–22934 (2005). (10.1021/jp054034a) / J. Phys. Chem. B by M Borgström (2005)
Dates
Type When
Created 11 years, 4 months ago (April 23, 2014, 5:04 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 2:37 a.m.)
Indexed 1 month, 3 weeks ago (July 7, 2025, 12:39 p.m.)
Issued 11 years, 4 months ago (April 23, 2014)
Published 11 years, 4 months ago (April 23, 2014)
Published Online 11 years, 4 months ago (April 23, 2014)
Funders 0

None

@article{Wang_2014, title={p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04756}, DOI={10.1038/srep04756}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Wang, Kuo-Chin and Jeng, Jun-Yuan and Shen, Po-Shen and Chang, Yu-Cheng and Diau, Eric Wei-Guang and Tsai, Cheng-Hung and Chao, Tzu-Yang and Hsu, Hsu-Cheng and Lin, Pei-Ying and Chen, Peter and Guo, Tzung-Fang and Wen, Ten-Chin}, year={2014}, month=apr }