Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 4(1).

Authors 3
  1. Paolo Umari (first)
  2. Edoardo Mosconi (additional)
  3. Filippo De Angelis (additional)
References 41 Referenced 1,162
  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051, 10.1021/ja809598r (2009). (10.1021/ja809598r) / J. Am. Chem. Soc. by A Kojima (2009)
  2. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319, 10.1038/nature12340 (2013). (10.1038/nature12340) / Nature by J Burschka (2013)
  3. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643–647, 10.1126/science.1228604 (2012). (10.1126/science.1228604) / Science by MM Lee (2012)
  4. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743, 10.1039/c3ee40810h (2013). (10.1039/c3ee40810h) / Energy Environ. Sci. by JM Ball (2013)
  5. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398, 10.1038/nature12509 (2013). (10.1038/nature12509) / Nature by M Liu (2013)
  6. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489, 10.1038/nature11067 (2012). (10.1038/nature11067) / Nature by I Chung (2012)
  7. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 134, 17396–17399, 10.1021/ja307789s (2012). (10.1021/ja307789s) / J. Am. Chem. Soc. by L Etgar (2012)
  8. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568, 10.1039/c0dt01601b (2011). (10.1039/c0dt01601b) / Dalton Trans. by Y Takahashi (2011)
  9. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities and Near-Infrared Photoluminescent Properties. Inorg. Chem. 52, 9019–9038, 10.1021/ic401215x (2013). (10.1021/ic401215x) / Inorg. Chem. by CC Stoumpos (2013)
  10. Papavassiliou, G. C. & Koutselas, I. B. Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synthetic Met. 71, 1713–1714, 10.1016/0379-6779(94)03017-Z (1995). (10.1016/0379-6779(94)03017-Z) / Synthetic Met. by GC Papavassiliou (1995)
  11. Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214, 10.1103/PhysRevB.77.235214 (2008). (10.1103/PhysRevB.77.235214) / Phys. Rev. B by I Borriello (2008)
  12. Chiarella, F. et al. Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X = Cl,Br). Phys. Rev. B 77, 045129, 10.1103/PhysRevB.77.045129 (2008). (10.1103/PhysRevB.77.045129) / Phys. Rev. B by F Chiarella (2008)
  13. Castelli, I. E. et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814–5819, 10.1039/c1ee02717d (2012). (10.1039/c1ee02717d) / Energy Environ. Sci. by IE Castelli (2012)
  14. Hedin, L. New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem. Phys. Rev. 139, A796–A823, 10.1103/PhysRev.139.A796 (1965). (10.1103/PhysRev.139.A796) / Phys. Rev. by L Hedin (1965)
  15. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413, 10.1103/PhysRevB.34.5390 (1986). (10.1103/PhysRevB.34.5390) / Phys. Rev. B by MS Hybertsen (1986)
  16. Berger, R. F. & Neaton, J. B. Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211, 10.1103/PhysRevB.86.165211 (2012). (10.1103/PhysRevB.86.165211) / Phys. Rev. B by RF Berger (2012)
  17. Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405, 10.1103/PhysRevB.67.155405 (2003). (10.1103/PhysRevB.67.155405) / Phys. Rev. B by T Umebayashi (2003)
  18. Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M. & De Angelis, F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 117, 13902–13913, 10.1021/jp4048659 (2013). (10.1021/jp4048659) / J. Phys. Chem. C by E Mosconi (2013)
  19. Chung, I. et al. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 134, 8579–8587, 10.1021/ja301539s (2012). (10.1021/ja301539s) / J. Am. Chem. Soc. by I Chung (2012)
  20. Pyykko, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594, 10.1021/cr00085a006 (1988). (10.1021/cr00085a006) / Chem. Rev. by P Pyykko (1988)
  21. Ahuja, R., Blomqvist, A., Larsson, P., Pyykkö, P. & Zaleski-Ejgierd, P. Relativity and the Lead-Acid Battery. Phys. Rev. Lett. 106, 018301 (2011). (10.1103/PhysRevLett.106.018301) / Phys. Rev. Lett. by R Ahuja (2011)
  22. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J. Phys. Chem. Lett. 4, 2999–3005, 10.1021/jz401532q (2013). (10.1021/jz401532q) / J. Phys. Chem. Lett. by J Even (2013)
  23. Sakuma, R., Friedrich, C., Miyake, T., Blügel, S. & Aryasetiawan, F. GW calculations including spin-orbit coupling: Application to Hg chalcogenides. Phys. Rev. B 84, 085144 (2011). (10.1103/PhysRevB.84.085144) / Phys. Rev. B by R Sakuma (2011)
  24. Umari, P. Stenuit, J. Baroni, S. Optimal representation of the polarization propagator for large-scale GW calculations. Phys. Rev. B 79, 210104(R), 10.1103/PhysRevB.79.201104 (2009). (10.1103/PhysRevB.79.201104) / Phys. Rev. B by P Umari (2009)
  25. Umari, P. Stenuit, J. Baroni, S. GW quasiparticle spectra from occupied states only. Phys. Rev. B 81, 115104, 10.1103/PhysRevB.81.115104 (2010). (10.1103/PhysRevB.81.115104) / Phys. Rev. B by P Umari (2010)
  26. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378, 10.1063/1.453467 (1987). (10.1063/1.453467) / J. Chem. Phys. by A Poglitsch (1987)
  27. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659, 10.1103/RevModPhys.74.601 (2002). (10.1103/RevModPhys.74.601) / Rev. Mod. Phys. by G Onida (2002)
  28. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi Rapid Res. Lett. 8, 31–35, 10.1002/pssr.201308183 (2014). (10.1002/pssr.201308183) / Phys. Status Solidi Rapid Res. Lett. by J Even (2014)
  29. Kim, H.-S. et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2, 591; 10.1038/srep00591 (2012). (10.1038/srep00591) / Sci. Rep. by H-S Kim (2012)
  30. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Comm. 127, 619–623, 10.1016/S0038-1098(03)00566-0 (2003). (10.1016/S0038-1098(03)00566-0) / Solid State Comm. by K Tanaka (2003)
  31. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. J. Phys. Chem. Lett. 4, 4213–4216, 10.1021/jz4023865 (2013). (10.1021/jz4023865) / J. Phys. Chem. Lett. by G Giorgi (2013)
  32. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562, 10.1103/RevModPhys.73.515 (2001). (10.1103/RevModPhys.73.515) / Rev. Mod. Phys. by S Baroni (2001)
  33. Souza, I., Íñiguez, J. & Vanderbilt, D. First-Principles Approach to Insulators in Finite Electric Fields. Phys. Rev. Lett. 89, 117602, 10.1103/PhysRevLett.89.117602 (2002). (10.1103/PhysRevLett.89.117602) / Phys. Rev. Lett. by I Souza (2002)
  34. Umari, P. & Pasquarello, A. Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 89, 157602, 10.1103/PhysRevLett.89.157602 (2002). (10.1103/PhysRevLett.89.157602) / Phys. Rev. Lett. by P Umari (2002)
  35. Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Physica B: Cond. Matter 201, 427–430, 10.1016/0921-4526(94)91130-4 (1994). (10.1016/0921-4526(94)91130-4) / Physica B: Cond. Matter by M Hirasawa (1994)
  36. Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Materials 1, 042111, 10.1063/1.4824147 (2013). (10.1063/1.4824147) / APL Materials by F Brivio (2013)
  37. Dal Corso, A. & Conte Mosca, A. Spin-orbit coupling with ultrasoft pseudopotentials: Application to Au and Pt. Phys. Rev. B 71, 115106, 10.1103/PhysRevB.71.115106 (2005). (10.1103/PhysRevB.71.115106) / Phys. Rev. B by A Dal Corso (2005)
  38. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 111, 216805, 10.1103/PhysRevLett.111.216805 (2013). (10.1103/PhysRevLett.111.216805) / Phys. Rev. Lett. by DY Qiu (2013)
  39. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944, 10.1103/PhysRevB.62.4927 (2000). (10.1103/PhysRevB.62.4927) / Phys. Rev. B by M Rohlfing (2000)
  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868, 10.1103/PhysRevLett.77.3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  41. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502, 10.1088/0953-8984/21/39/395502 (2009). (10.1088/0953-8984/21/39/395502) / J. Phys.: Condens. Matter by P Giannozzi (2009)
Dates
Type When
Created 11 years, 4 months ago (March 26, 2014, 6:12 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:11 a.m.)
Indexed 2 days, 3 hours ago (Aug. 23, 2025, 9:12 p.m.)
Issued 11 years, 5 months ago (March 26, 2014)
Published 11 years, 5 months ago (March 26, 2014)
Published Online 11 years, 5 months ago (March 26, 2014)
Funders 0

None

@article{Umari_2014, title={Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04467}, DOI={10.1038/srep04467}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Umari, Paolo and Mosconi, Edoardo and De Angelis, Filippo}, year={2014}, month=mar }