Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractThe atomic-scale structural and electric parameters of the 90° domain-walls in tetragonal ferroelectrics are of technological importance for exploring the ferroelectric switching behaviors and various domain-wall-related novel functions. We have grown epitaxial PbTiO3/SrTiO3 multilayer films in which the electric dipoles at 90° domain-walls of ferroelectric PbTiO3 are characterized by means of aberration-corrected scanning transmission electron microscopy. Besides the well-accepted head-to-tail 90° uncharged domain-walls, we have identified not only head-to-head positively charged but also tail-to-tail negatively charged domain-walls. The widths, polarization distributions and strains across these charged domain-walls are mapped quantitatively at atomic scale, where remarkable difference between these domain-walls is presented. This study is expected to provide fundamental information for understanding numerous novel domain-wall phenomena in ferroelectrics.

Bibliography

Tang, Y. L., Zhu, Y. L., Wang, Y. J., Wang, W. Y., Xu, Y. B., Ren, W. J., Zhang, Z. D., & Ma, X. L. (2014). Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films. Scientific Reports, 4(1).

Authors 8
  1. Y. L. Tang (first)
  2. Y. L. Zhu (additional)
  3. Y. J. Wang (additional)
  4. W. Y. Wang (additional)
  5. Y. B. Xu (additional)
  6. W. J. Ren (additional)
  7. Z. D. Zhang (additional)
  8. X. L. Ma (additional)
References 51 Referenced 56
  1. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007). (10.1126/science.1129564) / Science by JF Scott (2007)
  2. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). (10.1103/RevModPhys.77.1083) / Rev. Mod. Phys. by M Dawber (2005)
  3. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  4. Seidel et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). (10.1038/nmat2373) / Nat. Mater. by Seidel (2009)
  5. Vasudevan, R. K. et al. Domain wall conduction and polarization–mediated transport in ferroelectrics. Adv. Funct. Mater. 23, 2592–2616 (2013). (10.1002/adfm.201300085) / Adv. Funct. Mater. by RK Vasudevan (2013)
  6. Morozovska, A. N. Domain wall conduction in ferroelectrics. Ferroelectrics 438, 3–19 (2012). (10.1080/00150193.2012.744258) / Ferroelectrics by AN Morozovska (2012)
  7. Ren, X. Large electric–field–induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004). (10.1038/nmat1051) / Nat. Mater. by X Ren (2004)
  8. Cao, W. Ferroelectrics: The strain limits on switching. Nat. Mater. 4, 727–728 (2005). (10.1038/nmat1506) / Nat. Mater. by W Cao (2005)
  9. Shilo, D., Ravichandran, G. & Bhattacharya, K. Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mater. 3, 453–457 (2004). (10.1038/nmat1151) / Nat. Mater. by D Shilo (2004)
  10. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2003). (10.1038/nmat800) / Nat. Mater. by V Nagarajan (2003)
  11. Cao, W. & Cross, L. E. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B 44, 5–12 (1991). (10.1103/PhysRevB.44.5) / Phys. Rev. B by W Cao (1991)
  12. Li, J. Y., Rogan, R. C., Üstündag, E. & Bhattacharya, K. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776–781 (2005). (10.1038/nmat1485) / Nat. Mater. by JY Li (2005)
  13. Kalinin, S. V., Morozovska, A. N., Chen, L. Q. & Rodriguez, B. J. Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010). (10.1088/0034-4885/73/5/056502) / Rep. Prog. Phys. by SV Kalinin (2010)
  14. Jia, C.-L. et al. Atomic–scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nat. Mater. by C-L Jia (2008)
  15. Tanaka, M. & Honjo, G. Electron optical studies of Barium Titanate single crystal films. J. Phys. Soc. Jpn. 19, 954–970 (1964). (10.1143/JPSJ.19.954) / J. Phys. Soc. Jpn. by M Tanaka (1964)
  16. Dennist, M. D. & Bradt, R. C. Thickness of 90° ferroelectric domain walls in (Ba,Pb)TiO3 single crystals. J. Appl. Phys. 45, 1931–1933 (1974). (10.1063/1.1663523) / J. Appl. Phys. by MD Dennist (1974)
  17. Floquet, N. et al. Ferroelectric domain walls in BaTiO3: Fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Phys. III 7, 1105–1128 (1997). / J. Phys. III by N Floquet (1997)
  18. Goo, E. K. W., Mishra, R. K. & Thomas, G. Electron microscopy study of the ferroelectric domains and domain wall structure in PbZr0.52Ti0.48O3 . J. Appl. Phys. 52, 2940–2943 (1981). (10.1063/1.329032) / J. Appl. Phys. by EKW Goo (1981)
  19. Stemmesr, S., Streifferf, S. K., Ernst, F. & Rühle, M. Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films. Philos. Mag. A 71, 713–724 (1995). (10.1080/01418619508244477) / Philos. Mag. A by S Stemmesr (1995)
  20. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998). (10.1016/S0304-3991(98)00035-7) / Ultramicroscopy by MJ Hÿtch (1998)
  21. Foeth, M., Stadelmann, P. & Buffat, P.-A. Quantitative determination of the thickness of ferroelectric domain walls using weak beam transmission electron microscopy. Ultramicroscopy 75, 203–213 (1999). (10.1016/S0304-3991(98)00060-6) / Ultramicroscopy by M Foeth (1999)
  22. Foeth, M., Stadelmann, P. & Robert, M. Temperature dependence of the structure and energy of domain walls in a first–order ferroelectric. Physica A 373, 439–444 (2007). (10.1016/j.physa.2006.05.042) / Physica A by M Foeth (2007)
  23. Yavari, A., Ortiz, M. & Bhattacharya, K. Anharmonic lattice statics analysis of 180° and 90° ferroelectric domain walls in PbTiO3 . Philos. Mag. 87, 3997–4026 (2007). (10.1080/14786430701418956) / Philos. Mag. by A Yavari (2007)
  24. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002). (10.1103/PhysRevB.65.104111) / Phys. Rev. B by B Meyer (2002)
  25. Randall, C. A., Barber, D. J. & Whatmore, R. W. Ferroelectric domain configurations in a modified-PZT ceramic. J. Mater. Sci. 22, 925–931 (1987). (10.1007/BF01103531) / J. Mater. Sci. by CA Randall (1987)
  26. Abplanalp, M., Eng, L. M. & Günter, P. Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A 66, S231–S234 (1998). (10.1007/s003390051136) / Appl. Phys. A by M Abplanalp (1998)
  27. Ganpule, C. S. et al. Imaging three–dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477–1481 (2002). (10.1063/1.1421219) / J. Appl. Phys. by CS Ganpule (2002)
  28. Pennycook, S. J., Varela, M., Lupini, A. R., Oxley, M. P. & Chisholm, M. F. Atomic-resolution spectroscopic imaging: Past, present and future. J. Electron Microsc. 58, 87–97 (2009). (10.1093/jmicro/dfn030) / J. Electron Microsc. by SJ Pennycook (2009)
  29. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009). (10.1038/nmat2380) / Nat. Mater. by DA Muller (2009)
  30. Kim, Y.-M. et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 11, 888–894 (2012). (10.1038/nmat3393) / Nat. Mater. by Y-M Kim (2012)
  31. Bals, S. et al. Statistical estimation of atomic positions from ExitWave reconstruction with a precision in the picometer range. Phys. Rev. Lett. 96, 096106 (2006). (10.1103/PhysRevLett.96.096106) / Phys. Rev. Lett. by S Bals (2006)
  32. Aert, S. V. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523 (2012). (10.1002/adma.201103717) / Adv. Mater. by SV Aert (2012)
  33. Jia, C.-L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007). (10.1038/nmat1808) / Nat. Mater. by C-L Jia (2007)
  34. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011). (10.1021/nl1041808) / Nano Lett. by CT Nelson (2011)
  35. Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010). (10.1021/nn1011539) / ACS Nano by A Borisevich (2010)
  36. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010). (10.1103/PhysRevLett.105.087204) / Phys. Rev. Lett. by AY Borisevich (2010)
  37. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009). (10.1103/PhysRevB.79.081405) / Phys. Rev. B by CL Jia (2009)
  38. Catalan, G. et al. Polar domains in lead titanate films under tensile strain. Phys. Rev. Lett. 96, 127602 (2006). (10.1103/PhysRevLett.96.127602) / Phys. Rev. Lett. by G Catalan (2006)
  39. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008). (10.1038/nature06817) / Nature by E Bousquet (2008)
  40. Aguado–Puente, P., García-Fernández, P. & Junquera, J. Interplay of couplings between antiferrodistortive, ferroelectric and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 107, 217601 (2011). (10.1103/PhysRevLett.107.217601) / Phys. Rev. Lett. by P Aguado–Puente (2011)
  41. Chen, P. et al. Field-dependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 110, 047601 (2013). (10.1103/PhysRevLett.110.047601) / Phys. Rev. Lett. by P Chen (2013)
  42. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011). (10.1103/PhysRevB.83.235313) / Phys. Rev. B by EA Eliseev (2011)
  43. Biegalski, M. D. et al. Thermal expansion of the new perovskite substrates DyScO3 and GdScO3 . J. Mater. Res. 20, 952–958 (2005). (10.1557/JMR.2005.0126) / J. Mater. Res. by MD Biegalski (2005)
  44. Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012). (10.1103/PhysRevLett.108.077203) / Phys. Rev. Lett. by W Wu (2012)
  45. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Maksymovych, P. & Kalinin, S. V. Domain wall conduction in multiaxial ferroelectrics. Phys. Rev. B 85, 045312 (2012). (10.1103/PhysRevB.85.045312) / Phys. Rev. B by EA Eliseev (2012)
  46. Park, C. H. & Chadi, D. J. Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B 57, R13961–R13964 (1998). (10.1103/PhysRevB.57.R13961) / Phys. Rev. B by CH Park (1998)
  47. Franck, C., Ravichandran, G. & Bhattacharya, K. Characterization of domain walls in BaTiO3 using simultaneous atomic force and piezo response force microscopy. Appl. Phys. Lett. 88, 102907 (2006). (10.1063/1.2185640) / Appl. Phys. Lett. by C Franck (2006)
  48. Ganpule, C. S. et al. Role of 90° domains in lead zirconate titanate thin films. Appl. Phys. Lett. 77, 292–294 (2000). (10.1063/1.126954) / Appl. Phys. Lett. by CS Ganpule (2000)
  49. Roelofs, A. et al. Depolarizing–field–mediated 180° switching in ferroelectric thin films with 90° domains. Appl. Phys. Lett. 80, 1424–1426 (2002). (10.1063/1.1448653) / Appl. Phys. Lett. by A Roelofs (2002)
  50. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domainwall-mediated ferroelectric switching. Nat. Commun. 4, 2791; 10.1038/ncomms3791 (2013). (10.1038/ncomms3791) / Nat. Commun. by P Gao (2013)
  51. Anthony, S. M. & Granick, S. Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152–8160 (2009). (10.1021/la900393v) / Langmuir by SM Anthony (2009)
Dates
Type When
Created 11 years, 6 months ago (Feb. 18, 2014, 5:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:16 a.m.)
Indexed 1 day, 15 hours ago (Sept. 3, 2025, 6:54 a.m.)
Issued 11 years, 6 months ago (Feb. 18, 2014)
Published 11 years, 6 months ago (Feb. 18, 2014)
Published Online 11 years, 6 months ago (Feb. 18, 2014)
Funders 0

None

@article{Tang_2014, title={Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04115}, DOI={10.1038/srep04115}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tang, Y. L. and Zhu, Y. L. and Wang, Y. J. and Wang, W. Y. and Xu, Y. B. and Ren, W. J. and Zhang, Z. D. and Ma, X. L.}, year={2014}, month=feb }