Crossref
journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
References
49
Referenced
72
-
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid Exfoliation of Layered Materials. Science 340, 1226419-1−1226419-18 (2013).
(
10.1126/science.1226419
) -
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
(
10.1038/nnano.2012.193
) / Nat. Nanotechnol. by QH Wang (2012) -
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
(
10.1038/nchem.1589
) / Nat. Chem. by M Chhowalla (2013) -
Zeng, Z. et al. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angew. Chem. -In. Ed. 50, 11093–11097 (2011).
(
10.1002/anie.201106004
) / Angew. Chem. -In. Ed. by Z Zeng (2011) -
Halim, U. et al. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 4, 2213 (2013).
(
10.1038/ncomms3213
) / Nat. Commun. by U Halim (2013) -
Jiang, J. W., Zhuang, X. Y. & Rabczuk, T. Orientation Dependent Thermal Conductance in Single-Layer MoS2 . Sci. Rep. 3, 2209 (2013).
(
10.1038/srep02209
) / Sci. Rep. by JW Jiang (2013) -
Terrones, H., Lopez-Urias, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).
(
10.1038/srep01549
) / Sci. Rep. by H Terrones (2013) -
Lukowski, M. A. et al. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).
(
10.1021/ja404523s
) / J. Am. Chem. Soc. by MA Lukowski (2013) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Chou, S. S. et al. Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents. Angew. Chem. -In. Ed. 52, 4160–4164 (2013).
(
10.1002/anie.201209229
) / Angew. Chem. -In. Ed. by SS Chou (2013) -
Zhu, C. et al. Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc. 135, 5998–6001 (2013).
(
10.1021/ja4019572
) / J. Am. Chem. Soc. by C Zhu (2013) -
Huang, X., Zeng, Z. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).
(
10.1039/c2cs35387c
) / Chem. Soc. Rev. by X Huang (2013) -
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 110, 6595–6663 (2010).
(
10.1021/cr900356p
) / Chem. Rev. by A Hagfeldt (2010) -
Oregan, B. & Gratzel, M. A Low-cost, High-efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 353, 737–740 (1991).
(
10.1038/353737a0
) / Nature by B Oregan (1991) -
Lee, K. S. et al. Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chem. Commun. 46, 4505–4507 (2010).
(
10.1039/c0cc00432d
) / Chem. Commun. by KS Lee (2010) -
Wu, J. et al. A Large-Area Light-Weight Dye-Sensitized Solar Cell based on All Titanium Substrates with an Efficiency of 6.69% Outdoors. Adv. Mater. 24, 1884–1888 (2012).
(
10.1002/adma.201200003
) / Adv. Mater. by J Wu (2012) -
Murakami, T. N. et al. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006).
(
10.1149/1.2358087
) / J. Electrochem. Soc. by TN Murakami (2006) -
Xiao, Y. et al. Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012).
(
10.1039/c2jm34425d
) / J. Mater. Chem. by Y Xiao (2012) -
Wang, H., Sun, K., Tao, F., Stacchiola, D. J. & Hu, Y. H. 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells. Angew. Chem. -In. Ed. 52, 9210–9214 (2013).
(
10.1002/anie.201303497
) / Angew. Chem. -In. Ed. by H Wang (2013) -
Wang, H. & Hu, Y. H. Graphene as a counter electrode material for dye-sensitized solar cells. Energy & Environ. Sci. 5, 8182–8188 (2012).
(
10.1039/c2ee21905k
) / Energy & Environ. Sci. by H Wang (2012) -
Du, Y.-F. et al. One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells. Acs Appl. Mater. & Interfaces 4, 1796–1802 (2012).
(
10.1021/am3000616
) / Acs Appl. Mater. & Interfaces by Y-F Du (2012) -
Xin, X., He, M., Han, W., Jung, J. & Lin, Z. Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chem. -In. Ed. 50, 11739–11742 (2011).
(
10.1002/anie.201104786
) / Angew. Chem. -In. Ed. by X Xin (2011) -
Li, G. R., Song, J., Pan, G. L. & Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy & Environ. Sci. 4, 1680–1683 (2011).
(
10.1039/c1ee01105g
) / Energy & Environ. Sci. by GR Li (2011) -
Xiao, Y. et al. A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells. J. Mater. Chem. A 1, 13885–13889 (2013).
(
10.1039/c3ta12972a
) / J. Mater. Chem. A by Y Xiao (2013) -
Wang, H., Wei, W. & Hu, Y. H. Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1, 6622–6628 (2013).
(
10.1039/c3ta10892a
) / J. Mater. Chem. A by H Wang (2013) -
Wei, W., Wang, H. & Hu, Y. H. Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1, 14350–14357 (2013).
(
10.1039/c3ta13002a
) / J. Mater. Chem. A by W Wei (2013) -
Xiao, Y., Wu, J., Lin, J.-Y., Tai, S.-Y. & Yue, G. Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. J. Mater. Chem. A 1, 1289–1295 (2013).
(
10.1039/C2TA00073C
) / J. Mater. Chem. A by Y Xiao (2013) -
Xia, J., Chen, L. & Yanagida, S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 21, 4644–4649 (2011).
(
10.1039/c0jm04116e
) / J. Mater. Chem. by J Xia (2011) -
Yoo, B. et al. Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell. J. Mater. Chem. 21, 3077–3084 (2011).
(
10.1039/c0jm02962a
) / J. Mater. Chem. by B Yoo (2011) -
Zhang, T.-L., Chen, H.-Y., Su, C.-Y. & Kuang, D.-B. A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 1, 1724–1730 (2013).
(
10.1039/C2TA00974A
) / J. Mater. Chem. A by T-L Zhang (2013) -
Li, D., Huang, J. & Kaner, R. B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 42, 135–145 (2008).
(
10.1021/ar800080n
) / Acc. Chem. Res. by D Li (2008) -
Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).
(
10.1038/nmat3439
) / Nat. Mater. by J Kibsgaard (2012) -
Jaramillo, T. F. et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2 and WSe2 . Opt. Express 21, 4908–4916 (2013).
(
10.1364/OE.21.004908
) / Opt. Express by P Tonndorf (2013) -
Kong, D. S. et al. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 13, 1341–1347 (2013).
(
10.1021/nl400258t
) / Nano Lett. by DS Kong (2013) -
Wang, H. et al. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 13, 3426–3433 (2013).
(
10.1021/nl401944f
) / Nano Lett. by H Wang (2013) -
Wang, Y.-C. et al. FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar Cells. Angew. Chem. -In. Ed. 52, 6694–6698 (2013).
(
10.1002/anie.201300401
) / Angew. Chem. -In. Ed. by Y-C Wang (2013) -
Roy-Mayhew, J. D., Bozym, D. J., Punckt, C. & Aksay, I. A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano 4, 6203–6211 (2010).
(
10.1021/nn1016428
) / Acs Nano by JD Roy-Mayhew (2010) -
Wu, M. et al. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 134, 3419–3428 (2012).
(
10.1021/ja209657v
) / J. Am. Chem. Soc. by M Wu (2012) -
Sun, H. et al. In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-Sensitized Solar Cells. J. Phys. Chem. C 114, 11673–11679 (2010).
(
10.1021/jp1030015
) / J. Phys. Chem. C by H Sun (2010) -
Kavan, L., Yum, J.-H. & Grätzel, M. Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells. Nano Lett. 11, 5501–5506 (2011).
(
10.1021/nl203329c
) / Nano Lett. by L Kavan (2011) -
Hauch, A. & Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 46, 3457–3466 (2001).
(
10.1016/S0013-4686(01)00540-0
) / Electrochimica Acta by A Hauch (2001) -
Wang, M. et al. CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 131, 15976–15977 (2009).
(
10.1021/ja905970y
) / J. Am. Chem. Soc. by M Wang (2009) -
Adachi, M., Sakamoto, M., Jiu, J. T., Ogata, Y. & Isoda, S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006).
(
10.1021/jp061693u
) / J. Phys. Chem. B by M Adachi (2006) -
Wang, Q., Moser, J. E. & Gratzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005).
(
10.1021/jp052768h
) / J. Phys. Chem. B by Q Wang (2005) -
Benavente, E., Santa Ana, M. A., Mendizábal, F. & González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).
(
10.1016/S0010-8545(01)00392-7
) / Coord. Chem. Rev. by E Benavente (2002) -
Chen, T., Hu, W., Song, J., Guai, G. H. & Li, C. M. Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Adv. Funct. Mater. 22, 5245–5250 (2012).
(
10.1002/adfm.201201126
) / Adv. Funct. Mater. by T Chen (2012) -
Hua, Y. et al. Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chem. Mater., 2146–2153 (2013).
(
10.1021/cm400800h
) -
Chang, S., Li, Q., Xiao, X., Wong, K. Y. & Chen, T. Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy & Environ. Sci., 9444–9448 (2012).
(
10.1039/c2ee22657j
)
Dates
Type | When |
---|---|
Created | 11 years, 6 months ago (Feb. 14, 2014, 5:07 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 3:21 a.m.) |
Indexed | 10 hours, 11 minutes ago (Aug. 29, 2025, 6:03 a.m.) |
Issued | 11 years, 6 months ago (Feb. 14, 2014) |
Published | 11 years, 6 months ago (Feb. 14, 2014) |
Published Online | 11 years, 6 months ago (Feb. 14, 2014) |
@article{Lee_2014, title={Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04063}, DOI={10.1038/srep04063}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Lee, Lawrence Tien Lin and He, Jian and Wang, Baohua and Ma, Yaping and Wong, King Young and Li, Quan and Xiao, Xudong and Chen, Tao}, year={2014}, month=feb }