Crossref
journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
References
46
Referenced
48
-
Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006).
(
10.1073/pnas.0603395103
) / Proc. Natl. Acad. Sci. USA by NS Lewis (2006) -
Sun, L., Hammarström, L., Åkermark, B. & Styring, S. Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production. Chem. Soc. Rev. 30, 36–49 (2001).
(
10.1039/a801490f
) / Chem. Soc. Rev. by L Sun (2001) -
Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013).
(
10.1039/C2CS35223K
) / Chem. Soc. Rev. by PD Frischmann (2013) -
Han, Z. J., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).
(
10.1126/science.1227775
) / Science by ZJ Han (2012) -
Matt, B. et al. Charge photo-accumulation and photocatalytic hydrogen evolution under visible light at an iridium(III)-photosensitized polyoxotungstate. Energy Environ. Sci. 6, 1504–1508 (2013).
(
10.1039/c3ee40352a
) / Energy Environ. Sci. by B Matt (2013) -
Elvington, M., Brown, J., Arachchige, S. M. & Brewer, K. J. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J. Am. Chem. Soc. 129, 10644–10645 (2007).
(
10.1021/ja073123t
) / J. Am. Chem. Soc. by M Elvington (2007) -
Martis, M., Mori, K., Kato, K., Sankar, G. & Yamashita, H. What are the active species in the photoinduced H2 production with terpyridyl Pt(II) complexes? an investigation by in situ XAFS. ChemPhysChem 14, 1122–1125 (2013).
(
10.1002/cphc.201201093
) / ChemPhysChem by M Martis (2013) -
Sun, Y. J., Sun, J. W., Long, J. R., Yang, P. D. & Chang, C. J. Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers. Chem. Sci. 4, 118–124 (2013).
(
10.1039/C2SC21163G
) / Chem. Sci. by YJ Sun (2013) -
Yuan, Y. J. et al. Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. Inorg. Chem. 51, 4123–4133 (2012).
(
10.1021/ic202423y
) / Inorg. Chem. by YJ Yuan (2012) -
DiSalle, B. F. & Bernhard, S. Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. J. Am. Chem. Soc. 133, 11819–11821 (2011).
(
10.1021/ja201514e
) / J. Am. Chem. Soc. by BF DiSalle (2011) -
Khnayzer, R. S. et al. Photocatalytic hydrogen production at titania-supported Pt nanoclusters that are derived from surface-anchored molecular precursors. J. Phys. Chem. C 116, 1429–1438 (2012).
(
10.1021/jp206943s
) / J. Phys. Chem. C by RS Khnayzer (2012) -
Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator free system under high levels of oxygen. Angew. Chem. Int. Ed. 52, 12313–12316 (2013).
(
10.1002/anie.201306214
) / Angew. Chem. Int. Ed. by T Sakai (2013) -
Tschierlei, S. et al. Photochemical fate: the first step determines efficiency of H2 formation with a supramolecular photocatalyst. Angew. Chem. Int. Ed. 49, 3981–3984 (2010).
(
10.1002/anie.200906595
) / Angew. Chem. Int. Ed. by S Tschierlei (2010) -
Fihri, A. et al. Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564–567 (2008).
(
10.1002/anie.200702953
) / Angew. Chem. Int. Ed. by A Fihri (2008) -
Khnayzer, R. S., McCusker, C. E., Olaiya, B. S. & Castellano, F. N. Robust cuprous phenanthroline sensitizer for solar hydrogen photocatalysis. J. Am. Chem. Soc. 135, 14068–14070 (2013).
(
10.1021/ja407816f
) / J. Am. Chem. Soc. by RS Khnayzer (2013) -
Han, Z. J., McNamara, W. R., Eum, M. S., Holland, P. L. & Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem. Int. Ed. 51, 1667–1670 (2012).
(
10.1002/anie.201107329
) / Angew. Chem. Int. Ed. by ZJ Han (2012) -
Du, P., Knowles, K. & Eisenberg, R. A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576–12577 (2008).
(
10.1021/ja804650g
) / J. Am. Chem. Soc. by P Du (2008) -
Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005).
(
10.1021/ja0427101
) / J. Am. Chem. Soc. by JI Goldsmith (2005) -
Hansen, S., Pohl, M. M., Klahn, M., Spannenberg, A. & Beweries, T. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. ChemSusChem. 6, 92–101 (2013).
(
10.1002/cssc.201200617
) / ChemSusChem. by S Hansen (2013) -
Gärtner, F. et al. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chem. Eur. J. 17, 6998–7006 (2011).
(
10.1002/chem.201100235
) / Chem. Eur. J. by F Gärtner (2011) -
Zhang, P. et al. Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 1204–1206 (2010).
(
10.1039/B923159P
) / Dalton Trans. by P Zhang (2010) -
Wenger, O. S. Long-range electron transfer in artificial systems with d6 and d8 metal photosensitizers. Coord. Chem. Rev. 253, 1439–1457 (2009).
(
10.1016/j.ccr.2008.10.010
) / Coord. Chem. Rev. by OS Wenger (2009) -
Tinker, L. L. et al. Visible light induced catalytic water reduction without an electron relay. Chem. Eur. J. 13, 8726–8732 (2007).
(
10.1002/chem.200700480
) / Chem. Eur. J. by LL Tinker (2007) -
Metz, S. & Bernhard, S. Robust photocatalytic water reduction with cyclometalated Ir(III) 4-vinyl-2,2′-bipyridine complexes. Chem. Commun. 46, 7551–7553 (2010).
(
10.1039/c0cc01827a
) / Chem. Commun. by S Metz (2010) -
Yu, Z. T., Yuan, Y. J., Cai, J. G. & Zou, Z. G. Charge-neutral amidinate-containing iridium complexes capable of efficient photocatalytic water reduction. Chem. Eur. J. 19, 1303–1310 (2013).
(
10.1002/chem.201203029
) / Chem. Eur. J. by ZT Yu (2013) -
Yuan, Y. J. et al. Tricyclometalated iridium complexes as highly stable photosensitizers for light-induced hydrogen evolution. Chem. Eur. J. 19, 6340–6349 (2013).
(
10.1002/chem.201300146
) / Chem. Eur. J. by YJ Yuan (2013) -
Yuan, Y. J. et al. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. ChemSusChem. 6, 1357–1365 (2013).
(
10.1002/cssc.201300451
) / ChemSusChem. by YJ Yuan (2013) -
Zhang, W. et al. Nickel-thiolate complex catalyst assembled in one step in water for solar H2 production. J. Am. Chem. Soc. 133, 20680–20683 (2011).
(
10.1021/ja208555h
) / J. Am. Chem. Soc. by W Zhang (2011) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Li, Y. G. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
(
10.1021/ja201269b
) / J. Am. Chem. Soc. by YG Li (2011) -
Kibsgaard, J., Chen, Z. B., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).
(
10.1038/nmat3439
) / Nat. Mater. by J Kibsgaard (2012) -
Laursen, A. B., Kegnæs, S., Dahl, S. & Chorkendorff, I. Molybdenum sulfides- efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012).
(
10.1039/c2ee02618j
) / Energy Environ. Sci. by AB Laursen (2012) -
Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).
(
10.1021/ja8007825
) / J. Am. Chem. Soc. by X Zong (2008) -
Xiang, Q. J., Yu, J. G. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).
(
10.1021/ja302846n
) / J. Am. Chem. Soc. by QJ Xiang (2012) -
Zong, X. et al. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem. Commun. 4536–4538 (2009).
(
10.1039/b907307h
) -
Jiang, W. L. et al. Zwitterionic iridium complexes: synthesis, luminescent properties and their application in cell imaging. Inorg. Chem. 49, 3252–3260 (2010).
(
10.1021/ic9021239
) / Inorg. Chem. by WL Jiang (2010) -
Ye, J. X., Wang, Y., Xue, Q. J. & Wu, X. D. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 13, 900–904 (2011).
(
10.1039/c0gc00772b
) / Green Chem. by JX Ye (2011) -
Sun, H. & Hoffman, M. Z. Reductive quenching of the excited states of ruthenium(II) complexes containing 2,2′-bipyridine, 2,2′-bipyrazine and 2,2′-bipyrimidine ligands. J. Phys. Chem. 98, 11719–11726 (1994).
(
10.1021/j100096a015
) / J. Phys. Chem. by H Sun (1994) -
Cline, E. D., Adamson, S. E. & Bernhard, S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008).
(
10.1021/ic800988b
) / Inorg. Chem. by ED Cline (2008) -
Merki, D. & Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).
(
10.1039/c1ee01970h
) / Energy Environ. Sci. by D Merki (2011) -
Mau, A. W. H., Johansen, O. & Sasse, W. H. F. Xanthene dyes as sensitizers for the photoreduction of water. Photochem. Photobiol. 41, 503–506 (1985).
(
10.1111/j.1751-1097.1985.tb03519.x
) / Photochem. Photobiol. by AWH Mau (1985) -
Thurston, T. R. & Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2 . J. Phys. Chem. B 103, 11–17 (1999).
(
10.1021/jp982337h
) / J. Phys. Chem. B by TR Thurston (1999) -
O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
(
10.1038/353737a0
) / Nature by B O'Regan (1991) -
Yum, G. H. et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 3, 631 (2012).
(
10.1038/ncomms1655
) / Nat. Commun. by GH Yum (2012) -
Nazeeruddin, K. et al. Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20, 6514–6517 (2004).
(
10.1021/la0496082
) / Langmuir by K Nazeeruddin (2004) -
Langdon, B. T., MacKenzie, V. J., Asunskis, D. J. & Kelley, D. F. Electron injection dynamics of RuII(4,4′-dicarboxy-2,2′-bipyridine)2cis(NCS)2 adsorbed on MoS2 nanoclusters. J. Phys. Chem. B 103, 11176–11180 (1999).
(
10.1021/jp9930954
) / J. Phys. Chem. B by BT Langdon (1999)
Dates
Type | When |
---|---|
Created | 11 years, 6 months ago (Feb. 10, 2014, 5:31 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 3:23 a.m.) |
Indexed | 3 weeks, 4 days ago (Aug. 6, 2025, 8:44 a.m.) |
Issued | 11 years, 6 months ago (Feb. 10, 2014) |
Published | 11 years, 6 months ago (Feb. 10, 2014) |
Published Online | 11 years, 6 months ago (Feb. 10, 2014) |
@article{Yuan_2014, title={Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04045}, DOI={10.1038/srep04045}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Yuan, Yong-Jun and Yu, Zhen-Tao and Liu, Xiao-Jie and Cai, Jian-Guang and Guan, Zhong-Jie and Zou, Zhi-Gang}, year={2014}, month=feb }