Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Yuan, Y.-J., Yu, Z.-T., Liu, X.-J., Cai, J.-G., Guan, Z.-J., & Zou, Z.-G. (2014). Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts. Scientific Reports, 4(1).

Authors 6
  1. Yong-Jun Yuan (first)
  2. Zhen-Tao Yu (additional)
  3. Xiao-Jie Liu (additional)
  4. Jian-Guang Cai (additional)
  5. Zhong-Jie Guan (additional)
  6. Zhi-Gang Zou (additional)
References 46 Referenced 48
  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006). (10.1073/pnas.0603395103) / Proc. Natl. Acad. Sci. USA by NS Lewis (2006)
  2. Sun, L., Hammarström, L., Åkermark, B. & Styring, S. Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production. Chem. Soc. Rev. 30, 36–49 (2001). (10.1039/a801490f) / Chem. Soc. Rev. by L Sun (2001)
  3. Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013). (10.1039/C2CS35223K) / Chem. Soc. Rev. by PD Frischmann (2013)
  4. Han, Z. J., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012). (10.1126/science.1227775) / Science by ZJ Han (2012)
  5. Matt, B. et al. Charge photo-accumulation and photocatalytic hydrogen evolution under visible light at an iridium(III)-photosensitized polyoxotungstate. Energy Environ. Sci. 6, 1504–1508 (2013). (10.1039/c3ee40352a) / Energy Environ. Sci. by B Matt (2013)
  6. Elvington, M., Brown, J., Arachchige, S. M. & Brewer, K. J. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J. Am. Chem. Soc. 129, 10644–10645 (2007). (10.1021/ja073123t) / J. Am. Chem. Soc. by M Elvington (2007)
  7. Martis, M., Mori, K., Kato, K., Sankar, G. & Yamashita, H. What are the active species in the photoinduced H2 production with terpyridyl Pt(II) complexes? an investigation by in situ XAFS. ChemPhysChem 14, 1122–1125 (2013). (10.1002/cphc.201201093) / ChemPhysChem by M Martis (2013)
  8. Sun, Y. J., Sun, J. W., Long, J. R., Yang, P. D. & Chang, C. J. Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers. Chem. Sci. 4, 118–124 (2013). (10.1039/C2SC21163G) / Chem. Sci. by YJ Sun (2013)
  9. Yuan, Y. J. et al. Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. Inorg. Chem. 51, 4123–4133 (2012). (10.1021/ic202423y) / Inorg. Chem. by YJ Yuan (2012)
  10. DiSalle, B. F. & Bernhard, S. Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. J. Am. Chem. Soc. 133, 11819–11821 (2011). (10.1021/ja201514e) / J. Am. Chem. Soc. by BF DiSalle (2011)
  11. Khnayzer, R. S. et al. Photocatalytic hydrogen production at titania-supported Pt nanoclusters that are derived from surface-anchored molecular precursors. J. Phys. Chem. C 116, 1429–1438 (2012). (10.1021/jp206943s) / J. Phys. Chem. C by RS Khnayzer (2012)
  12. Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator free system under high levels of oxygen. Angew. Chem. Int. Ed. 52, 12313–12316 (2013). (10.1002/anie.201306214) / Angew. Chem. Int. Ed. by T Sakai (2013)
  13. Tschierlei, S. et al. Photochemical fate: the first step determines efficiency of H2 formation with a supramolecular photocatalyst. Angew. Chem. Int. Ed. 49, 3981–3984 (2010). (10.1002/anie.200906595) / Angew. Chem. Int. Ed. by S Tschierlei (2010)
  14. Fihri, A. et al. Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564–567 (2008). (10.1002/anie.200702953) / Angew. Chem. Int. Ed. by A Fihri (2008)
  15. Khnayzer, R. S., McCusker, C. E., Olaiya, B. S. & Castellano, F. N. Robust cuprous phenanthroline sensitizer for solar hydrogen photocatalysis. J. Am. Chem. Soc. 135, 14068–14070 (2013). (10.1021/ja407816f) / J. Am. Chem. Soc. by RS Khnayzer (2013)
  16. Han, Z. J., McNamara, W. R., Eum, M. S., Holland, P. L. & Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem. Int. Ed. 51, 1667–1670 (2012). (10.1002/anie.201107329) / Angew. Chem. Int. Ed. by ZJ Han (2012)
  17. Du, P., Knowles, K. & Eisenberg, R. A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576–12577 (2008). (10.1021/ja804650g) / J. Am. Chem. Soc. by P Du (2008)
  18. Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005). (10.1021/ja0427101) / J. Am. Chem. Soc. by JI Goldsmith (2005)
  19. Hansen, S., Pohl, M. M., Klahn, M., Spannenberg, A. & Beweries, T. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. ChemSusChem. 6, 92–101 (2013). (10.1002/cssc.201200617) / ChemSusChem. by S Hansen (2013)
  20. Gärtner, F. et al. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chem. Eur. J. 17, 6998–7006 (2011). (10.1002/chem.201100235) / Chem. Eur. J. by F Gärtner (2011)
  21. Zhang, P. et al. Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 1204–1206 (2010). (10.1039/B923159P) / Dalton Trans. by P Zhang (2010)
  22. Wenger, O. S. Long-range electron transfer in artificial systems with d6 and d8 metal photosensitizers. Coord. Chem. Rev. 253, 1439–1457 (2009). (10.1016/j.ccr.2008.10.010) / Coord. Chem. Rev. by OS Wenger (2009)
  23. Tinker, L. L. et al. Visible light induced catalytic water reduction without an electron relay. Chem. Eur. J. 13, 8726–8732 (2007). (10.1002/chem.200700480) / Chem. Eur. J. by LL Tinker (2007)
  24. Metz, S. & Bernhard, S. Robust photocatalytic water reduction with cyclometalated Ir(III) 4-vinyl-2,2′-bipyridine complexes. Chem. Commun. 46, 7551–7553 (2010). (10.1039/c0cc01827a) / Chem. Commun. by S Metz (2010)
  25. Yu, Z. T., Yuan, Y. J., Cai, J. G. & Zou, Z. G. Charge-neutral amidinate-containing iridium complexes capable of efficient photocatalytic water reduction. Chem. Eur. J. 19, 1303–1310 (2013). (10.1002/chem.201203029) / Chem. Eur. J. by ZT Yu (2013)
  26. Yuan, Y. J. et al. Tricyclometalated iridium complexes as highly stable photosensitizers for light-induced hydrogen evolution. Chem. Eur. J. 19, 6340–6349 (2013). (10.1002/chem.201300146) / Chem. Eur. J. by YJ Yuan (2013)
  27. Yuan, Y. J. et al. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. ChemSusChem. 6, 1357–1365 (2013). (10.1002/cssc.201300451) / ChemSusChem. by YJ Yuan (2013)
  28. Zhang, W. et al. Nickel-thiolate complex catalyst assembled in one step in water for solar H2 production. J. Am. Chem. Soc. 133, 20680–20683 (2011). (10.1021/ja208555h) / J. Am. Chem. Soc. by W Zhang (2011)
  29. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). (10.1126/science.1141483) / Science by TF Jaramillo (2007)
  30. Li, Y. G. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). (10.1021/ja201269b) / J. Am. Chem. Soc. by YG Li (2011)
  31. Kibsgaard, J., Chen, Z. B., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). (10.1038/nmat3439) / Nat. Mater. by J Kibsgaard (2012)
  32. Laursen, A. B., Kegnæs, S., Dahl, S. & Chorkendorff, I. Molybdenum sulfides- efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012). (10.1039/c2ee02618j) / Energy Environ. Sci. by AB Laursen (2012)
  33. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008). (10.1021/ja8007825) / J. Am. Chem. Soc. by X Zong (2008)
  34. Xiang, Q. J., Yu, J. G. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012). (10.1021/ja302846n) / J. Am. Chem. Soc. by QJ Xiang (2012)
  35. Zong, X. et al. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem. Commun. 4536–4538 (2009). (10.1039/b907307h)
  36. Jiang, W. L. et al. Zwitterionic iridium complexes: synthesis, luminescent properties and their application in cell imaging. Inorg. Chem. 49, 3252–3260 (2010). (10.1021/ic9021239) / Inorg. Chem. by WL Jiang (2010)
  37. Ye, J. X., Wang, Y., Xue, Q. J. & Wu, X. D. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 13, 900–904 (2011). (10.1039/c0gc00772b) / Green Chem. by JX Ye (2011)
  38. Sun, H. & Hoffman, M. Z. Reductive quenching of the excited states of ruthenium(II) complexes containing 2,2′-bipyridine, 2,2′-bipyrazine and 2,2′-bipyrimidine ligands. J. Phys. Chem. 98, 11719–11726 (1994). (10.1021/j100096a015) / J. Phys. Chem. by H Sun (1994)
  39. Cline, E. D., Adamson, S. E. & Bernhard, S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008). (10.1021/ic800988b) / Inorg. Chem. by ED Cline (2008)
  40. Merki, D. & Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011). (10.1039/c1ee01970h) / Energy Environ. Sci. by D Merki (2011)
  41. Mau, A. W. H., Johansen, O. & Sasse, W. H. F. Xanthene dyes as sensitizers for the photoreduction of water. Photochem. Photobiol. 41, 503–506 (1985). (10.1111/j.1751-1097.1985.tb03519.x) / Photochem. Photobiol. by AWH Mau (1985)
  42. Thurston, T. R. & Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2 . J. Phys. Chem. B 103, 11–17 (1999). (10.1021/jp982337h) / J. Phys. Chem. B by TR Thurston (1999)
  43. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). (10.1038/353737a0) / Nature by B O'Regan (1991)
  44. Yum, G. H. et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 3, 631 (2012). (10.1038/ncomms1655) / Nat. Commun. by GH Yum (2012)
  45. Nazeeruddin, K. et al. Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20, 6514–6517 (2004). (10.1021/la0496082) / Langmuir by K Nazeeruddin (2004)
  46. Langdon, B. T., MacKenzie, V. J., Asunskis, D. J. & Kelley, D. F. Electron injection dynamics of RuII(4,4′-dicarboxy-2,2′-bipyridine)2cis(NCS)2 adsorbed on MoS2 nanoclusters. J. Phys. Chem. B 103, 11176–11180 (1999). (10.1021/jp9930954) / J. Phys. Chem. B by BT Langdon (1999)
Dates
Type When
Created 11 years, 6 months ago (Feb. 10, 2014, 5:31 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:23 a.m.)
Indexed 3 weeks, 4 days ago (Aug. 6, 2025, 8:44 a.m.)
Issued 11 years, 6 months ago (Feb. 10, 2014)
Published 11 years, 6 months ago (Feb. 10, 2014)
Published Online 11 years, 6 months ago (Feb. 10, 2014)
Funders 0

None

@article{Yuan_2014, title={Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep04045}, DOI={10.1038/srep04045}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Yuan, Yong-Jun and Yu, Zhen-Tao and Liu, Xiao-Jie and Cai, Jian-Guang and Guan, Zhong-Jie and Zou, Zhi-Gang}, year={2014}, month=feb }