Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Park, M. S., Ma, S. B., Lee, D. J., Im, D., Doo, S.-G., & Yamamoto, O. (2014). A Highly Reversible Lithium Metal Anode. Scientific Reports, 4(1).

Authors 6
  1. Min Sik Park (first)
  2. Sang Bok Ma (additional)
  3. Dong Joon Lee (additional)
  4. Dongmin Im (additional)
  5. Seok-Gwang Doo (additional)
  6. Osamu Yamamoto (additional)
References 38 Referenced 291
  1. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). (10.1038/28818) / Nature by F Croce (1998)
  2. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by J-M Tarascon (2001)
  3. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012). (10.1038/nmat3191) / Nature Mater. by PG Bruce (2012)
  4. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Mater. 8, 500–506 (2009). (10.1038/nmat2460) / Nature Mater. by X Ji (2009)
  5. Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. & Scrosati, B. An improved high-performance lithium-air battery. Nature Chem. 4, 579–585 (2012). (10.1038/nchem.1376) / Nature Chem. by H-G Jung (2012)
  6. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012). (10.1126/science.1223985) / Science by Z Peng (2012)
  7. Winter, M. et al. Studies on the anode/electrolyte interface in lithium ion batteries. Monatsh. Chem. 132, 473-486 (2001). (10.1007/s007060170110) / Monatsh. Chem. by M Winter (2001)
  8. Aurbach, D. et al. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76–84 (1995). (10.1016/0378-7753(94)02044-4) / J. Power Sources by D Aurbach (1995)
  9. Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000). (10.1149/1.1393349) / J. Electrochem. Soc. by D Aurbach (2000)
  10. Howlett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97–A101 (2004). (10.1149/1.1664051) / Electrochem. Solid-State Lett. by PC Howlett (2004)
  11. Jeong, S. et al. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun. 10, 635–638 (2008). (10.1016/j.elecom.2008.02.006) / Electrochem. Commun. by S Jeong (2008)
  12. Fringant, C., Tranchant, A. & Messina, R. Behavior of lithium-electrolyte interface during cycling in some ether-carbonate and carbonate mixtures. Electrochim. Acta 40, 513–523 (1995). (10.1016/0013-4686(94)00199-B) / Electrochim. Acta by C Fringant (1995)
  13. Hirai, T., Yoshimatsu, I. & Yamaki, J. Influence of electrolyte on lithium cycling efficiency with pressurized electrode stack. J. Electrochem. Soc. 141, 611–613 (1994). (10.1149/1.2054778) / J. Electrochem. Soc. by T Hirai (1994)
  14. Eweka, E., Owen, J. R. & Ritchie, A. Electrolytes and additives for high efficiency lithium cycling. J. Power Sources 65, 247–251 (1997). (10.1016/S0378-7753(97)02482-8) / J. Power Sources by E Eweka (1997)
  15. Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011). (10.1039/C0JM02305A) / J. Mater. Chem. by GA Umeda (2011)
  16. Ota, H., Wang, X. & Yasukawa, E. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. J. Electrochem. Soc. 151, A427–A436 (2004). (10.1149/1.1644136) / J. Electrochem. Soc. by H Ota (2004)
  17. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Commun. 4, 1481 (2013). (10.1038/ncomms2513) / Nature Commun. by L Suo (2013)
  18. Wilkinson, D. P., Blom, H., Brandt, K. & Wainwright, D. Effects of physical constraints on Li cyclability. J. Power Sources 36, 517–527 (1991). (10.1016/0378-7753(91)80077-B) / J. Power Sources by DP Wilkinson (1991)
  19. Lee, S.-H., Liu, P. & Tracy, C. E. Lithium thin-film battery with a reversed structural configuration SS/Li/Lipon/LixV2O5/Cu. Electrochem. Solid-State Lett. 6, A275–A277 (2003). (10.1149/1.1623171) / Electrochem. Solid-State Lett. by S-H Lee (2003)
  20. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater. 12, 452–457 (2013). (10.1038/nmat3602) / Nature Mater. by R Bouchet (2013)
  21. Blomgren, G. E. Chapter 2. Physical and chemical properties of nonaqueous electrolyte solutions. Nonaqueous Electrochemistry Aurbach, D. (ed.) 56–58 (Marcel Dekker, Inc., 1999). (10.1201/9780824741389.ch2)
  22. Yoshida, K. et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 133, 13121–13129 (2011). (10.1021/ja203983r) / J. Am. Chem. Soc. by K Yoshida (2011)
  23. Park, M. S. & Doo, S. Topmost atomistic Li structures and native point defects in the Li(001) surface. ECS Trans. 35, 14, 1–6 (2011). / ECS Trans. by MS Park (2011)
  24. Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377–A1384 (2003). (10.1149/1.1606686) / J. Electrochem. Soc. by C Monroe (2003)
  25. Bard, A. J. & Faulkner, L. R. Chapter 2. Potentials and thermodynamics of cells. Electrochemical Methods: Fundamentals and Applications 65–69 (Wiley, 2000).
  26. Lin, R. et al. Microelectrode study of pore size, ion size and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors. J. Electrochem. Soc. 156, A7–A12 (2009). (10.1149/1.3002376) / J. Electrochem. Soc. by R Lin (2009)
  27. Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 141, 3336–3342 (1994). (10.1149/1.2059336) / J. Electrochem. Soc. by M Ue (1994)
  28. Chaikin, P. M. & Lubensky, T. C. Chapter 2. Structure and scattering. Principles of Condensed Matter Physics 90–97 (Cambridge Univ. Press, 1995). (10.1017/CBO9780511813467)
  29. Uwaha, M. & Saito, Y. Aggregation growth in a gas of finite density: velocity selection via fractal dimension of diffusion-limited aggregation. Phys. Rev. A 40, 4716–4723 (1989). (10.1103/PhysRevA.40.4716) / Phys. Rev. A by M Uwaha (1989)
  30. Bockris, J. O'M. & Reddy, A. K. N. Chapter 4. Ion transport in solutions., Modern Electrochemisty: Ionics 442–456 (Plenum Press, New York and London, 1998).
  31. Liu, Y., Lee, J. Y. & Hong, L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. J. Power Sources 129, 303–311 (2004). (10.1016/j.jpowsour.2003.11.026) / J. Power Sources by Y Liu (2004)
  32. Scrosati, B., Croce, F. & Perci, L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochem. Soc. 147, 1718–1721 (2000). (10.1149/1.1393423) / J. Electrochem. Soc. by B Scrosati (2000)
  33. Capiglia, C., Mustarelli, P., Quartarone, E., Tomasi, C. & Magistris, A. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide)(PEO)-based polymer electrolytes. Solid State Ionics 118, 73–79 (1999). (10.1016/S0167-2738(98)00457-3) / Solid State Ionics by C Capiglia (1999)
  34. Liu, S. et al. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J. Power Sources 195, 6847–6853 (2010). (10.1016/j.jpowsour.2010.04.027) / J. Power Sources by S Liu (2010)
  35. Giannelis, E. P. Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996). (10.1002/adma.19960080104) / Adv. Mater. by EP Giannelis (1996)
  36. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005). (10.1021/cr9904009) / Chem. Rev. by J Tomasi (2005)
  37. Frisch, M. J. et al. Gaussian-03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.
  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
Dates
Type When
Created 11 years, 7 months ago (Jan. 22, 2014, 5:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 3:50 a.m.)
Indexed 28 minutes ago (Aug. 25, 2025, 10:03 p.m.)
Issued 11 years, 7 months ago (Jan. 22, 2014)
Published 11 years, 7 months ago (Jan. 22, 2014)
Published Online 11 years, 7 months ago (Jan. 22, 2014)
Funders 0

None

@article{Park_2014, title={A Highly Reversible Lithium Metal Anode}, volume={4}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep03815}, DOI={10.1038/srep03815}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Park, Min Sik and Ma, Sang Bok and Lee, Dong Joon and Im, Dongmin and Doo, Seok-Gwang and Yamamoto, Osamu}, year={2014}, month=jan }