Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractUltra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

Bibliography

Zhou, Z., Hu, Y., Wang, H., Xu, Z., Wang, W., Bai, X., Shan, X., & Lu, X. (2013). DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride. Scientific Reports, 3(1).

Authors 8
  1. Zhi Zhou (first)
  2. Ying Hu (additional)
  3. Hao Wang (additional)
  4. Zhi Xu (additional)
  5. Wenlong Wang (additional)
  6. Xuedong Bai (additional)
  7. Xinyan Shan (additional)
  8. Xinghua Lu (additional)
References 27 Referenced 107
  1. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996). (10.1073/pnas.93.24.13770) / Proc. Natl. Acad. Sci. USA by JJ Kasianowicz (1996)
  2. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotech. 30, 344–348 (2012). (10.1038/nbt.2147) / Nat. Biotech. by GM Cherf (2012)
  3. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA 105, 20647–20652 (2008). (10.1073/pnas.0807514106) / Proc. Natl. Acad. Sci. USA by TZ Butler (2008)
  4. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotech. 30, 349–353 (2012). (10.1038/nbt.2171) / Nat. Biotech. by EA Manrao (2012)
  5. Li, J. et al. Ion-beam sculpting at nanometer length scales. Nature 412, 166–169 (2001). (10.1038/35084037) / Nature by J Li (2001)
  6. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotech. 6, 615–624 (2011). (10.1038/nnano.2011.129) / Nat. Nanotech. by BM Venkatesan (2011)
  7. Wanunu, M. Nanopores: A journey towards DNA sequencing. Phy. Life Rev. 9, 125–158 (2012). (10.1016/j.plrev.2012.05.010) / Phy. Life Rev. by M Wanunu (2012)
  8. Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotech. 2, 775–779 (2007). (10.1038/nnano.2007.381) / Nat. Nanotech. by M Gershow (2007)
  9. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010). (10.1038/nature09379) / Nature by S Garaj (2010)
  10. Schneider, G. F. et al. DNA translocation through Graphene nanopores. Nano Lett. 10, 3163–3167 (2010). (10.1021/nl102069z) / Nano Lett. by GF Schneider (2010)
  11. Merchant, C. A. et al. DNA translocation through Graphene nanopores. Nano Lett. 10, 2915–2921 (2010). (10.1021/nl101046t) / Nano Lett. by CA Merchant (2010)
  12. Garaj, S., Liu, S., Golovchenko, J. A. & Brantom, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. USA 110, 12192–12196 (2013). (10.1073/pnas.1220012110) / Proc. Natl. Acad. Sci. USA by S Garaj (2013)
  13. Schneider, G. F. et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat. Commun. 4, 2619 (2013). (10.1038/ncomms3619) / Nat. Commun. by GF Schneider (2013)
  14. Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010). (10.1021/nn1006495) / ACS Nano by D Golberg (2010)
  15. Chen, Y., Zou, J., Campbell, S. J. & Caer, G. L. Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). (10.1063/1.1667278) / Appl. Phys. Lett. by Y Chen (2004)
  16. Pakdel, A., Zhi, C., Bando, Y. & Golberg, D. Low-dimensional boron nitride nanomaterials. Mater. Today 15, 256–265 (2012). (10.1016/S1369-7021(12)70116-5) / Mater. Today by A Pakdel (2012)
  17. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). (10.1038/nmat1134) / Nat. Mater. by K Watanabe (2004)
  18. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010). (10.1126/science.1184167) / Science by C Lee (2010)
  19. Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2012). (10.1021/nl203249a) / Nano Lett. by KK Kim (2012)
  20. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). (10.1021/nl1022139) / Nano Lett. by L Song (2010)
  21. Nag, A. et al. Graphene analogues of BN: novel synthesis and properties. ACS Nano 4, 1539–1544 (2010). (10.1021/nn9018762) / ACS Nano by A Nag (2010)
  22. Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 10.1002/adma.201301336 (2013). (10.1002/adma.201301336)
  23. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011). (10.1002/smll.201001628) / Small by RV Gorbachev (2011)
  24. Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007). (10.1364/OE.15.016604) / Opt. Express by Q Lin (2007)
  25. Zhang, E. X. et al. Ozone-exposure and annealing effects on graphene-on-SiO2 transistors. Appl. Phys. Lett. 101, 121601 (2012). (10.1063/1.4753817) / Appl. Phys. Lett. by EX Zhang (2012)
  26. Li, J. & Talaga, D. S. The distribution of DNA translocation times in solid-state nanopores. J. Phys.: Condens. Matter 22, 454129 (2010). / J. Phys.: Condens. Matter by J Li (2010)
  27. Daniel Y. Ling & Xinsheng Sean Ling . On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger's first-passage-time theory. J. Phys.: Condens. Matter 25, 375102 (2013). / J. Phys.: Condens. Matter by Ling Daniel Y. (2013)
Dates
Type When
Created 11 years, 9 months ago (Nov. 21, 2013, 5:19 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 11:48 p.m.)
Indexed 1 month, 3 weeks ago (July 3, 2025, 12:27 p.m.)
Issued 11 years, 9 months ago (Nov. 21, 2013)
Published 11 years, 9 months ago (Nov. 21, 2013)
Published Online 11 years, 9 months ago (Nov. 21, 2013)
Funders 0

None

@article{Zhou_2013, title={DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride}, volume={3}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep03287}, DOI={10.1038/srep03287}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Zhou, Zhi and Hu, Ying and Wang, Hao and Xu, Zhi and Wang, Wenlong and Bai, Xuedong and Shan, Xinyan and Lu, Xinghua}, year={2013}, month=nov }