Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Rojas, J. P., Torres Sevilla, G. A., & Hussain, M. M. (2013). Can We Build a Truly High Performance Computer Which is Flexible and Transparent? Scientific Reports, 3(1).

Authors 3
  1. Jhonathan P. Rojas (first)
  2. Galo A. Torres Sevilla (additional)
  3. Muhammad M. Hussain (additional)
References 32 Referenced 61
  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004). (10.1038/nature02498) / Nature by SR Forrest (2004)
  2. Reuss, R. H. et al. Macroelectronics: Pers. Tech. and App. Proc. IEEE 93(7), 1239 (2005). / Macroelectronics: Pers. Tech. and App. Proc. IEEE by RH Reuss (2005)
  3. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745 (2007). (10.1038/nature05533) / Nature by H Klauk (2007)
  4. Xia, Y., Kalihari, V. & Frisbie, C. D. Tetracene air-gap single-crystal field-effect transistors. Appl. Phys. Lett. 90, 162106 (2007). (10.1063/1.2724895) / Appl. Phys. Lett. by Y Xia (2007)
  5. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230 (2007). (10.1038/nnano.2007.77) / Nature Nanotech. by SJ Kang (2007)
  6. Lee, S.-K. et al. Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Lett. 11, 4642 (2011). (10.1021/nl202134z) / Nano Lett. by S-K Lee (2011)
  7. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495 (2008). (10.1038/nature07110) / Nature by Q Cao (2008)
  8. Ko, H. J., Baca, A. J. & Rogers, J. A. Bulk Quantities of Single-Crystal Silicon Micro-/Nanoribbons Generated from Bulk Wafers. Nano Lett. 6(10), 2318 (2006). (10.1021/nl061846p) / Nano Lett. by HJ Ko (2006)
  9. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mat. 7, 907 (2008). (10.1038/nmat2287) / Nat. Mat. by J Yoon (2008)
  10. Ahn, J.-H. et al. High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates. IEEE Elect. Dev. Lett. 27(6), 460 (2006). (10.1109/LED.2006.874764) / IEEE Elect. Dev. Lett. by J-H Ahn (2006)
  11. Sun, L. et al. 12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics. Small 6(22), 2553 (2010). (10.1002/smll.201000522) / Small by L Sun (2010)
  12. Ahn, J.-H. et al. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90, 213501 (2007). (10.1063/1.2742294) / Appl. Phys. Lett. by J-H Ahn (2007)
  13. Kim, H.-S. et al. Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors and logic gates on plastic substrates. Appl. Phys. Lett. 95, 183504 (2009). (10.1063/1.3256223) / Appl. Phys. Lett. by H-S Kim (2009)
  14. Tae-il et al. Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. App. Phys. Lett. 102, 182104 (2013). (10.1063/1.4804139) / App. Phys. Lett. by Tae-il (2013)
  15. Lee, K. J. et al. Fabrication of microstructured silicon (μs-Si) from a bulk Si wafer and its use in the printing of high-performance thin-film transistors on plastic substrates. J. Micromech. Microeng. 20, 075018 (2010). (10.1088/0960-1317/20/7/075018) / J. Micromech. Microeng. by KJ Lee (2010)
  16. Ahn, J.-H. et al. Heterogeneous Three Dimensional Electronics Using Printed Semiconductor Nanomaterials. Science. 314, 1754 (2006). (10.1126/science.1132394) / Science. by J-H Ahn (2006)
  17. Razouk, R. R. & Deal, B. E. Dependence of interface state density on silicon thermal oxidation process variables. J. Electrochem. Soc. 126, 1573 (1979). (10.1149/1.2129333) / J. Electrochem. Soc. by RR Razouk (1979)
  18. Kato, Y., Takao, H., Sawada, K. & Ishida, M. The characteristic improvement of Si (111) metal–oxide–semiconductor field-effect transistor by long-time hydrogen annealing. Jpn. J. Appl. Phys. 43, 6848 (2004). (10.1143/JJAP.43.6848) / Jpn. J. Appl. Phys. by Y Kato (2004)
  19. Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-Performance Flexible Thin-Film Transistors Exfoliated from Bulk Wafer. Nano Lett. 12(11), 5609 (2012). (10.1021/nl302735f) / Nano Lett. by Y Zhai (2012)
  20. Shahrjerdi, D. & Bedell, S. W. Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic. Nano Lett. 13, 315 (2013). (10.1021/nl304310x) / Nano Lett. by D Shahrjerdi (2013)
  21. Burghartz, J. N., Appel, W., Rempp, H. D. & Zimmermann, M. A New Fabrication and Assembly Process for Ultrathin Chips. IEEE Trans. Elect. Dev. 56(2), 321 (2009). (10.1109/TED.2009.2010581) / IEEE Trans. Elect. Dev. by JN Burghartz (2009)
  22. Sanda, H. et al. Fabrication and Characterization of CMOSFETs on Porous Silicon for Novel Device Layer Transfer. IEDM Tech. Dig. Washington, USA, 679 (2005).
  23. Rojas, J. P., Syed, A. & Hussain, M. M. Mechanically Flexible Optically Transparent Porous Mono-crystalline Silicon Substrate. 25th IEEE Intl. Conf. MEMS Paris, France, 281 (2012). (10.1109/MEMSYS.2012.6170146)
  24. Rojas, J. P. & Hussain, M. M. Flexible Semi-transparent Silicon (100) Fabric with High-k/Metal Gate Devices. Phys. Status Solidi RRL 7(3), 187 (2013). (10.1002/pssr.201206490) / Phys. Status Solidi RRL by JP Rojas (2013)
  25. Rojas, J. P. & Hussain, M. M. Structural and Electrical Characteristics of High-k/Metal Gate MOSCAPs Fabricated on Flexible, Semi-transparent Silicon (100) Fabric. Appl. Phys. Lett. 102, 064102 (2013). (10.1063/1.4791693) / Appl. Phys. Lett. by JP Rojas (2013)
  26. Torres Sevilla, G. A. et al. Silicon Fabric for Multifunctional Applications. The 17th Intl. Conf. Solid-State Sensors, Actuators and Microsystems. Barcelona, Spain, 2013 June 16–20 (accepted). (10.1109/Transducers.2013.6627347)
  27. Schroder, D. K. Semiconductor Material and Device Characterization, 3rd Edition., John Wiley & Sons, 2006. Chapter 4, pp 223. (10.1002/0471749095)
  28. Schroder, D. K. Semiconductor Material and Device Characterization, 3rd Edition., John Wiley & Sons, 2006. Chapter 8, pp 489. (10.1002/0471749095)
  29. Park, S.-I. et al. Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Adv. Funct. Mater. 18, 2673 (2008). (10.1002/adfm.200800306) / Adv. Funct. Mater. by S-I Park (2008)
  30. Timoshenko, S. P. & Gere, J. M. in Theory of Elastic Stability, 2nd ed., McGraw Hill, New York, 1961, Chapter 2 and 9.
  31. Wang, J. Stress effects on MOSFETs. PhD Dissertation. Arizona State University. 2008.
  32. Palmer, C. & Loewen, E. Diffraction Grating Handbook. 6th Edition. Newport, 2005. Chapter 1. pp 15.
Dates
Type When
Created 11 years, 11 months ago (Sept. 10, 2013, 5:39 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 12:11 a.m.)
Indexed 3 months, 4 weeks ago (April 30, 2025, 12:48 a.m.)
Issued 11 years, 11 months ago (Sept. 10, 2013)
Published 11 years, 11 months ago (Sept. 10, 2013)
Published Online 11 years, 11 months ago (Sept. 10, 2013)
Funders 0

None

@article{Rojas_2013, title={Can We Build a Truly High Performance Computer Which is Flexible and Transparent?}, volume={3}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep02609}, DOI={10.1038/srep02609}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Rojas, Jhonathan P. and Torres Sevilla, Galo A. and Hussain, Muhammad M.}, year={2013}, month=sep }