Abstract
AbstractCatalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100} and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts.
References
42
Referenced
296
-
Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).
(
10.1126/science.1140484
) / Science by N Tian (2007) -
Burda, C., Chen, X. B., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).
(
10.1021/cr030063a
) / Chem. Rev. by C Burda (2005) -
Zhou, K. & Li, Y. Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem. In. Ed. 51, 602–613 (2012).
(
10.1002/anie.201102619
) / Angew. Chem. In. Ed. by K Zhou (2012) -
Zhou, Z.-Y., Tian, N., Li, J.-T., Broadwell, I. & Sun, S.-G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011).
(
10.1039/c0cs00176g
) / Chem. Soc. Rev. by Z-Y Zhou (2011) -
Zhang, H., Jin, M. & Xia, Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035–8049 (2012).
(
10.1039/c2cs35173k
) / Chem. Soc. Rev. by H Zhang (2012) -
Spencer, C. D. & Schroeer, D. Mössbauer study of several cobalt spinels using Co57 and Fe57. Phys. Rev. B. 9, 3658–3665 (1974).
(
10.1103/PhysRevB.9.3658
) / Phys. Rev. B. by CD Spencer (1974) -
Zavyalova, U., Scholz, P. & Ondruschka, B. Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/gamma-Al2O3 catalysts for total oxidation of methane. Appl. Catal. A-Gen. 323, 226–233 (2007).
(
10.1016/j.apcata.2007.02.021
) / Appl. Catal. A-Gen. by U Zavyalova (2007) -
Liotta, L. F., Di Carlo, G., Pantaleo, G. & Deganello, G. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Appl. Catal. B-Environ. 70, 314–322 (2007).
(
10.1016/j.apcatb.2005.12.023
) / Appl. Catal. B-Environ. by LF Liotta (2007) -
Xiao, T. C., Ji, S. F., Wang, H. T., Coleman, K. S. & Green, M. L. H. Methane combustion over supported cobalt catalysts. J. Mol. Catal. A-Chem. 175, 111–123 (2001).
(
10.1016/S1381-1169(01)00205-9
) / J. Mol. Catal. A-Chem. by TC Xiao (2001) -
Zwinkels, M. F. M., Jaras, S. G., Menon, P. G. & Griffin, T. A. Catalytic Materials for High Temperature Combustion. Catal. Rev. Sci. Eng. 35, 319–358 (1993).
(
10.1080/01614949308013910
) / Catal. Rev. Sci. Eng. by MFM Zwinkels (1993) -
Alvarez, A., Ivanova, S., Centeno, M. A. & Odriozola, J. A. Sub-ambient CO oxidation over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic performance. Appl. Catal. A-Gen. 431, 9–17 (2012).
(
10.1016/j.apcata.2012.04.006
) / Appl. Catal. A-Gen. by A Alvarez (2012) -
Xie, X. W., Li, Y., Liu, Z. Q., Haruta, M. & Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).
(
10.1038/nature07877
) / Nature by XW Xie (2009) -
Hu, L. H., Peng, Q. & Li, Y. D. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc. 130, 16136–16367 (2008).
(
10.1021/ja806400e
) / J. Am. Chem. Soc. by LH Hu (2008) -
Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3, 546–550 (2011).
(
10.1038/nchem.1069
) / Nat. Chem. by J Suntivich (2011) -
Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 334, 1383–1385 (2011).
(
10.1126/science.1212858
) / Science by J Suntivich (2011) -
Liang, Y. Y. et al. Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. J. Am. Chem. Soc. 134, 15849–15857 (2012).
(
10.1021/ja305623m
) / J. Am. Chem. Soc. by YY Liang (2012) -
Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).
(
10.1038/nmat3087
) / Nat. Mater. by Y Liang (2011) -
Liang, Y. Y. et al. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012).
(
10.1021/ja210924t
) / J. Am. Chem. Soc. by YY Liang (2012) -
Xiao, J. W., Xu, G. L., Sun, S. G. & Yang, S. H. MFe2O4 and MFe@oxide Core-shell Nanoparticles Anchored on N-doped Graphene Sheets for Synergistically Enhancing Lithium Storage Performance and Electrocatalytic Activity for Oxygen Reduction Reactions. Part. Part. Syst. Charact. 10.1002/ppsc.201300105 (2013).
(
10.1002/ppsc.201300105
) -
Xiao, J. & Yang, S. Nanocomposites of Ni(OH)2/Reduced Graphene Oxides with Controllable Composition, Size and Morphology: Performance Variations as Pseudocapacitor Electrodes. ChemPlusChem 77, 807–816 (2012).
(
10.1002/cplu.201200102
) / ChemPlusChem by J Xiao (2012) -
Xiao, J. W. & Yang, S. H. Bio-inspired synthesis of NaCl-type CoxNi1-xO (0 < = x < 1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors. J. Mater. Chem. 22, 12253–12262 (2012).
(
10.1039/c2jm31057k
) / J. Mater. Chem. by JW Xiao (2012) -
Xiao, J. W. & Yang, S. H. Bio-inspired synthesis: understanding and exploitation of the crystallization process from amorphous precursors. Nanoscale 4, 54–65 (2012).
(
10.1039/C1NR11044F
) / Nanoscale by JW Xiao (2012) -
Fu, L. et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv. Mater. 17, 217–221 (2005).
(
10.1002/adma.200400833
) / Adv. Mater. by L Fu (2005) -
Ernst, B., Libs, S., Chaumette, P. & Kiennemann, A. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Appl. Catal. A-Gen. 186, 145–168 (1999).
(
10.1016/S0926-860X(99)00170-2
) / Appl. Catal. A-Gen. by B Ernst (1999) -
Xu, J., Gao, P. & Zhao, T. S. Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ. Sci. 5, 5333–5339 (2012).
(
10.1039/C1EE01431E
) / Energy Environ. Sci. by J Xu (2012) -
Xiao, J. & Yang, S. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 1, 588–595 (2011).
(
10.1039/c1ra00342a
) / RSC Adv. by J Xiao (2011) -
De Koninck, M. & Marsan, B. MnxCu1-xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim. Acta 53, 7012–7021 (2008).
(
10.1016/j.electacta.2008.02.002
) / Electrochim. Acta by M De Koninck (2008) -
Cui, H. F., Ye, J. S., Liu, X., Zhang, W. D. & Sheu, F. S. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17, 2334–2339 (2006).
(
10.1088/0957-4484/17/9/043
) / Nanotechnology by HF Cui (2006) -
Tang, X. F., Li, J. H. & Hao, J. M. Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {111} facets. Mater. Res. Bull. 43, 2912–2918 (2008).
(
10.1016/j.materresbull.2007.12.009
) / Mater. Res. Bull. by XF Tang (2008) -
Hu, L., Sun, K., Peng, Q., Xu, B. & Li, Y. Surface Active Sites on Co3O4 Nanobelt and Nanocube Model Catalysts for CO Oxidation. Nano Res. 3, 363–368 (2010).
(
10.1007/s12274-010-1040-2
) / Nano Res. by L Hu (2010) -
Sun, Y. et al. Ultrathin Co3O4 nanowires with high catalytic oxidation of CO. Chem. Commun. 47, 11279–11281 (2011).
(
10.1039/c1cc14484g
) / Chem. Commun. by Y Sun (2011) -
Broqvist, P., Panas, I. & Persson, H. A DFT study on CO oxidation over Co3O4 . J. Catal. 210, 198–206 (2002).
(
10.1006/jcat.2002.3678
) / J. Catal. by P Broqvist (2002) -
Grillo, F., Natile, M. M. & Glisenti, A. Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Appl. Catal. B-Environ. 48, 267–274 (2004).
(
10.1016/j.apcatb.2003.11.003
) / Appl. Catal. B-Environ. by F Grillo (2004) -
Jansson, J. Low-temperature CO oxidation over Co3O4/Al2O3 . J. Catal. 194, 55–60 (2000).
(
10.1006/jcat.2000.2924
) / J. Catal. by J Jansson (2000) -
Petitto, S. C., Marsh, E. M., Carson, G. A. & Langell, M. A. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J. Mol. Catal. A-Chem. 281, 49–58 (2008).
(
10.1016/j.molcata.2007.08.023
) / J. Mol. Catal. A-Chem. by SC Petitto (2008) -
Jansson, J. et al. On the catalytic activity of Co3O4 in low-temperature CO oxidation. J. Catal. 211, 387–397 (2002).
(
10.1016/S0021-9517(02)93738-3
) / J. Catal. by J Jansson (2002) -
Omata, K., Takada, T., Kasahara, S. & Yamada, M. Active site of substituted cobalt spinel oxide for selective oxidation of CO/H-2.2. Appl. Catal. A-Gen. 146, 255–267 (1996).
(
10.1016/S0926-860X(96)00151-2
) / Appl. Catal. A-Gen. by K Omata (1996) -
Beaufils, J. P. & Barbaux, Y. Study of adsorption on powders by surface differential diffraction measurements. Argon on Co3O4 . J. Appl. Cryst. 15, 301–307 (1982).
(
10.1107/S0021889882012023
) / J. Appl. Cryst. by JP Beaufils (1982) -
Ziolkowski, J. & Barbaux, Y. Identification of Sites Active in Oxidation of Butene-1 to Butadiene and CO2 on Co3O4 in Terms of the Crystallochemical Model of Solid-Surfaces. J. Mol. Catal. 67, 199–215 (1991).
(
10.1016/0304-5102(91)85047-6
) / J. Mol. Catal. by J Ziolkowski (1991) -
Yeager, E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 38, 5–25 (1986).
(
10.1016/0304-5102(86)87045-6
) / J. Mol. Catal. by E Yeager (1986) -
Guo, S., Zhang, S., Wu, L. & Sun, S. Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angew. Chem. In. Ed. 51, 11770–11773 (2012).
(
10.1002/anie.201206152
) / Angew. Chem. In. Ed. by S Guo (2012) -
Hummers, W. S. & Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339 (1958).
(
10.1021/ja01539a017
) / J. Am. Chem. Soc. by WS Hummers (1958)
Dates
Type | When |
---|---|
Created | 12 years, 1 month ago (July 29, 2013, 7:09 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 6, 2023, 12:24 a.m.) |
Indexed | 1 week, 5 days ago (Aug. 21, 2025, 1:57 p.m.) |
Issued | 12 years, 1 month ago (July 29, 2013) |
Published | 12 years, 1 month ago (July 29, 2013) |
Published Online | 12 years, 1 month ago (July 29, 2013) |
@article{Xiao_2013, title={Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction}, volume={3}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep02300}, DOI={10.1038/srep02300}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Xiao, Junwu and Kuang, Qin and Yang, Shihe and Xiao, Fei and Wang, Shuai and Guo, Lin}, year={2013}, month=jul }