Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Tian, L., Li, J., Sun, J., Ma, E., & Shan, Z.-W. (2013). Visualizing size-dependent deformation mechanism transition in Sn. Scientific Reports, 3(1).

Authors 5
  1. Lin Tian (first)
  2. Ju Li (additional)
  3. Jun Sun (additional)
  4. Evan Ma (additional)
  5. Zhi-Wei Shan (additional)
References 46 Referenced 64
  1. Coble, R. L. A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. J. Appl. Phys. 34, 1679–1682 (1963). (10.1063/1.1702656) / J. Appl. Phys. by RL Coble (1963)
  2. Zhu, T. & Li, J. Ultra-strength materials. Progress in Materials Science 55, 710–757 (2010). (10.1016/j.pmatsci.2010.04.001) / Progress in Materials Science by T Zhu (2010)
  3. Shan, Z. W. et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004). (10.1126/science.1098741) / Science by ZW Shan (2004)
  4. Wang, N., Wang, Z. R., Aust, K. T. & Erb, U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Materials Science and Engineering A 237, 150–158 (1997). (10.1016/S0921-5093(97)00124-X) / Materials Science and Engineering A by N Wang (1997)
  5. Cai, B., Kong, Q. P., Lu, L. & Lu, K. Interface controlled diffusional creep of nanocrystalline pure copper. Scripta Materialia 41, 755–759 (1999). (10.1016/S1359-6462(99)00213-4) / Scripta Materialia by B Cai (1999)
  6. Youngdahl, C. J., Weertman, J. R., Hugo, R. C. & Kung, H. H. Deformation behavior in nanocrystalline copper. Scripta Materialia 44, 1475–1478 (2001). (10.1016/S1359-6462(01)00712-6) / Scripta Materialia by CJ Youngdahl (2001)
  7. Shan, Z. W., Mishra, R. K., Asif, S. A., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. NATURE MATERIALS 7, 115–119 (2008). (10.1038/nmat2085) / NATURE MATERIALS by ZW Shan (2008)
  8. Kumar, K. S., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia 51, 5743–5774 (2003). (10.1016/j.actamat.2003.08.032) / Acta Materialia by KS Kumar (2003)
  9. Dao, M., Lu, L., Asaro, R., Dehosson, J. & Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Materialia 55, 4041–4065 (2007). (10.1016/j.actamat.2007.01.038) / Acta Materialia by M Dao (2007)
  10. Strachan, D. R. et al. Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Letters 6, 441–444 (2006). (10.1021/nl052302a) / Nano Letters by DR Strachan (2006)
  11. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000). (10.1038/35046000) / Nature by C Joachim (2000)
  12. Strachan, D. R. et al. Real-time TEM imaging of the formation of crystalline nanoscale gaps. Physical Review Letters 100, 056805 (2008). (10.1103/PhysRevLett.100.056805) / Physical Review Letters by DR Strachan (2008)
  13. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997). (10.1126/science.278.5336.252) / Science by MA Reed (1997)
  14. Howatson, A. M., Lund, P. G. & Todd, J. D. Engineering tables and data. 41 (Chapman and Hall, 1991).
  15. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004). (10.1126/science.1098993) / Science by MD Uchic (2004)
  16. Wang, Z.-J. et al. Sample size effects on the large strain bursts in submicron aluminum pillars. Applied Physics Letters 100, (2012). (10.1063/1.3681582) / Applied Physics Letters by Zhang-Jie Wang (2012)
  17. Wang, Z.-J., Shan, Z.-W., Li, J., Sun, J. & Ma, E. Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles. Acta Materialia 60, 1368–1377 (2012). (10.1016/j.actamat.2011.10.035) / Acta Materialia by Z-J Wang (2012)
  18. Bei, H. et al. Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. SCRIPTA MATERIALIA 57, 397–400 (2007). (10.1016/j.scriptamat.2007.05.010) / SCRIPTA MATERIALIA by H Bei (2007)
  19. Lu, Y., Song, J., Huang, J. Y. & Lou, J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 4, 1261–1267 (2011). (10.1007/s12274-011-0177-y) / Nano Res. by Y Lu (2011)
  20. Zheng, H. et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nature Communications 1, 144 (2010). (10.1038/ncomms1149) / Nature Communications by H Zheng (2010)
  21. Kondo, Y. & Takayanagi, K. Gold nanobridge stabilized by surface structure. Physical Review Letters 79, 3455–3458 (1997). (10.1103/PhysRevLett.79.3455) / Physical Review Letters by Y Kondo (1997)
  22. Greer, J. & Nix, W. Nanoscale gold pillars strengthened through dislocation starvation. PHYSICAL REVIEW B 73, (2006). (10.1103/PhysRevB.73.245410)
  23. Huang, L. et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. Nature Communications 2, 547 (2011). (10.1038/ncomms1557) / Nature Communications by L Huang (2011)
  24. Qian, Y., Suzhi, L., Minor, A. M., Jun, S. & Ma, E. High-strength titanium alloy nanopillars with stacking faults and enhanced plastic flow. Applied Physics Letters 100, 063109 (063104 pp.)–063109 (063104 pp.) (2012). (10.1063/1.3693382) / Applied Physics Letters by Y Qian (2012)
  25. Kiener, D. & Minor, A. M. Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Materialia 59, 1328–1337 (2011). (10.1016/j.actamat.2010.10.065) / Acta Materialia by D Kiener (2011)
  26. Jia, Y., Mishra, R. K., Sachdev, A. K. & Minor, A. M. In situ TEM compression testing of Mg and Mg-0.2wt.% Ce single crystals. Scripta Materialia 64, 292–295 (2011). (10.1016/j.scriptamat.2011.01.019) / Scripta Materialia by Y Jia (2011)
  27. Ford, J. M., Wheeler, J. & Movchan, A. B. Computer simulation of grain-boundary diffusion creep. Acta Materialia 50, 3941–3955 (2002). (10.1016/S1359-6454(02)00196-9) / Acta Materialia by JM Ford (2002)
  28. Zhang, W. & Schneibel, J. H. The sintering of two particles by surface and grain boundary diffusion–a two-dimensional numerical study. Acta Metallurgica Et Materialia 43, 4377–4386 (1995). (10.1016/0956-7151(95)00115-C) / Acta Metallurgica Et Materialia by W Zhang (1995)
  29. Beere, W. & Rutter, E. H. Stresses and Deformation at Grain Boundaries. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 288, 177–196 (1978). (10.1098/rsta.1978.0012) / Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences by W Beere (1978)
  30. Sun, P. H. & Ohring, M. Tracer self-diffusion and electromigration in thin tin films. J. Appl. Phys. 47, 478–485 (1976). (10.1063/1.322647) / J. Appl. Phys. by PH Sun (1976)
  31. Singh, P. & Ohring, M. Tracer study of diffusion and electromigration in thin tin films. J. Appl. Phys. 56, 899–907 (1984). (10.1063/1.334065) / J. Appl. Phys. by P Singh (1984)
  32. Mishin, Y., Asta, M. & Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia 58, 1117–1151 (2010). (10.1016/j.actamat.2009.10.049) / Acta Materialia by Y Mishin (2010)
  33. Einstein, A. The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Annalen Der Physik 17, 549–560 (1905). (10.1002/andp.19053220806) / Annalen Der Physik by A Einstein (1905)
  34. Sellers, M. S., Schultz, A. J., Basaran, C. & Kofke, D. A. beta-Sn grain-boundary structure and self-diffusivity via molecular dynamics simulations. Physical Review B 81, 134111 (2010). (10.1103/PhysRevB.81.134111) / Physical Review B by MS Sellers (2010)
  35. Cheng, J., Chen, S., Vianco, P. T. & Li, J. C. M. Quantitative analysis for hillocks grown from electroplated Sn film. J. Appl. Phys. 107, (2010). (10.1063/1.3359658)
  36. Ashby, M. F. A first report on deformation-mechanism maps. Acta Metallurgica 20, 887–897 (1972). (10.1016/0001-6160(72)90082-X) / Acta Metallurgica by MF Ashby (1972)
  37. Suresh, S. & Li, J. Material science: Deformation of the ultra-strong. Nature 456, 716–717 (2008). (10.1038/456716a) / Nature by S Suresh (2008)
  38. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010). (10.1038/nature08692) / Nature by Q Yu (2010)
  39. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004). (10.1016/j.micron.2004.02.003) / Micron by RF Egerton (2004)
  40. Haynes, W. M., Lide, D. R. & Thomas, J. Bruno, P. D. CRC Handbook of Chemistry and Physics. (Taylor & Francis, 2012).
  41. Guo, H. et al. Tensile ductility and necking of metallic glass. Nature Materials 6, 735–739 (2007). (10.1038/nmat1984) / Nature Materials by H Guo (2007)
  42. Luo, J. H., Wu, F. F., Huang, J. Y., Wang, J. Q. & Mao, S. X. Superelongation and Atomic Chain Formation in Nanosized Metallic Glass. Physical Review Letters 104, 215503 (2010). (10.1103/PhysRevLett.104.215503) / Physical Review Letters by JH Luo (2010)
  43. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science. (Springer London, Limited, 2009). (10.1007/978-0-387-76501-3)
  44. Myhra, S. & Gardiner, R. B. Evidence of an atomic displacement process in electron irradiated α-tin. Physics Letters A. 39, 405–406 (1972). (10.1016/0375-9601(72)90115-6)
  45. Hren, J., Goldstein, J. I. & Joy, D. C. Introduction to Analytical Electron Microscopy. (Plenum Press, 1979). (10.1007/978-1-4757-5581-7)
  46. Bradley, C. R. & Zaluzec, N. J. ATOMIC SPUTTERING IN THE ANALYTICAL ELECTRON-MICROSCOPE. Ultramicroscopy 28, 335–338 (1989). (10.1016/0304-3991(89)90320-3) / Ultramicroscopy by CR Bradley (1989)
Dates
Type When
Created 12 years, 1 month ago (July 3, 2013, 5:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 6, 2023, 12:14 a.m.)
Indexed 2 months, 3 weeks ago (May 27, 2025, 1:04 p.m.)
Issued 12 years, 1 month ago (July 3, 2013)
Published 12 years, 1 month ago (July 3, 2013)
Published Online 12 years, 1 month ago (July 3, 2013)
Funders 0

None

@article{Tian_2013, title={Visualizing size-dependent deformation mechanism transition in Sn}, volume={3}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep02113}, DOI={10.1038/srep02113}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tian, Lin and Li, Ju and Sun, Jun and Ma, Evan and Shan, Zhi-Wei}, year={2013}, month=jul }