Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Kumar, A., Arruda, T. M., Tselev, A., Ivanov, I. N., Lawton, J. S., Zawodzinski, T. A., Butyaev, O., Zayats, S., Jesse, S., & Kalinin, S. V. (2013). Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes. Scientific Reports, 3(1).

Authors 10
  1. Amit Kumar (first)
  2. Thomas M. Arruda (additional)
  3. Alexander Tselev (additional)
  4. Ilia N. Ivanov (additional)
  5. Jamie S. Lawton (additional)
  6. Thomas A. Zawodzinski (additional)
  7. Oleg Butyaev (additional)
  8. Sergey Zayats (additional)
  9. Stephen Jesse (additional)
  10. Sergei V. Kalinin (additional)
References 25 Referenced 31
  1. Fuechsle, M. et al. A single-atom transistor. Nature Nanotech. 7, 242–246 (2012). (10.1038/nnano.2012.21) / Nature Nanotech. by M Fuechsle (2012)
  2. Shao, Y. et al. Making Li-Air Batteries Rechargeable: Material Challenges. Adv. Func. Mat. 23, 987–1004 (2013). (10.1002/adfm.201200688) / Adv. Func. Mat. by Y Shao (2013)
  3. Madden, J. D. W. et al. Fast carbon nanotube charging and actuation. Adv. Mat. 18, 870–873 (2006). (10.1002/adma.200502136) / Adv. Mat. by JDW Madden (2006)
  4. Baughman, R. H. Playing nature's game with artificial muscles. Science 308, 63–65 (2005). (10.1126/science.1099010) / Science by RH Baughman (2005)
  5. Garcia, R. et al. Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope. App. Phys. Lett. 96, 143110 (2010). (10.1063/1.3374885) / App. Phys. Lett. by R Garcia (2010)
  6. Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008). (10.1038/nmat2136) / Nat. Mater. by C Cen (2008)
  7. Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009). (10.1088/0957-4484/20/21/215201) / Nanotechnology by JJ Yang (2009)
  8. Garcia, R., Martinez, R. V. & Martinez, J. Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006). (10.1039/B501599P) / Chem. Soc. Rev. by R Garcia (2006)
  9. Maupai, S., Zhang, Y. & Schmuki, P. Nanoscale observation of initial stages of Cd-electrodeposition on Au(111). Surf. Science 527, L165–L170 (2003). (10.1016/S0039-6028(03)00078-5) / Surf. Science by S Maupai (2003)
  10. Martinez, R. V., Losilla, N. S., Martinez, J., Tello, M. & Garcia, R. Sequential and parallel patterning by local chemical nanolithography. Nanotechnology 18, 084021 (2007). (10.1088/0957-4484/18/8/084021) / Nanotechnology by RV Martinez (2007)
  11. Lee, M., O'Hayre, R., Prinz, F. B. & Gur, T. M. Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy. App. Phys. Lett. 85, 3552–3554 (2004). (10.1063/1.1807964) / App. Phys. Lett. by M Lee (2004)
  12. Kruempelmann, J., Balabajew, M., Gellert, M. & Roling, B. Quantitative nanoscopic impedance measurements on silver-ion conducting glasses using atomic force microscopy combined with impedance spectroscopy. Solid State Ionics 198, 16–21 (2011). (10.1016/j.ssi.2011.07.008) / Solid State Ionics by J Kruempelmann (2011)
  13. Fu, J. Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5 . Solid State Ionics 104, 191–194 (1997). (10.1016/S0167-2738(97)00434-7) / Solid State Ionics by J Fu (1997)
  14. Fu, J. Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5 . Solid State Ionics 96, 195–200 (1997). (10.1016/S0167-2738(97)00018-0) / Solid State Ionics by J Fu (1997)
  15. Kraytsberg, A. & Ein-Eli, Y. Review on Li-air batteries-Opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2011). (10.1016/j.jpowsour.2010.09.031) / J. Power Sources by A Kraytsberg (2011)
  16. Arruda, T. M., Kumar, A., Kalinin, S. V. & Jesse, S. Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics. Nano Lett. 11, 4161–4167 (2011). (10.1021/nl202039v) / Nano Lett. by TM Arruda (2011)
  17. Arruda, T. M., Kumar, A., Kalinin, S. V. & Jesse, S. The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology 23, 325402 (2012). (10.1088/0957-4484/23/32/325402) / Nanotechnology by TM Arruda (2012)
  18. Kruempelmann, J. et al. Nanoscale electrochemical measurements on a lithium-ion conducting glass ceramic: In-situ monitoring of the lithium particle growth. Electrochem. Comm. 18, 74–77 (2012). (10.1016/j.elecom.2012.02.019) / Electrochem. Comm. by J Kruempelmann (2012)
  19. Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Mater. 11, 530–5 (2012). (10.1038/nmat3307) / Nature Mater. by I Valov (2012)
  20. Soni, R. et al. On the stochastic nature of resistive switching in Cu doped Ge0.3Se0.7 based memory devices. J. App. Phys. 110, 054509 (2011). (10.1063/1.3631013) / J. App. Phys. by R Soni (2011)
  21. Chandrasekhar, H. R., Bhattacharya, G., Migoni, R. & Bilz, H. Infrared and Raman-Spectra and Lattice-Dynamics of Superionic Conductor Li3N. Phys. Rev. B 17, 884–893 (1978). (10.1103/PhysRevB.17.884) / Phys. Rev. B by HR Chandrasekhar (1978)
  22. Kumar, B., Nellutla, S., Thokchom, J. S. & Chen, C. Ionic conduction through heterogeneous solids: Delineation of the blocking and space charge effects. J. Power Sources 160, 1329–1335 (2006). (10.1016/j.jpowsour.2006.02.062) / J. Power Sources by B Kumar (2006)
  23. Kumar, B., Thomas, D. & Kumar, J. Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics. J. Electrochem. Soc. 156, A506–A513 (2009). (10.1149/1.3122903) / J. Electrochem. Soc. by B Kumar (2009)
  24. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V. & Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chem. 3, 707–713 (2011). (10.1038/nchem.1112) / Nature Chem. by A Kumar (2011)
  25. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech. 5, 749–754 (2010). (10.1038/nnano.2010.174) / Nature Nanotech. by N Balke (2010)
Dates
Type When
Created 12 years, 4 months ago (April 8, 2013, 5:07 a.m.)
Deposited 2 years, 8 months ago (Jan. 6, 2023, 12:49 a.m.)
Indexed 1 month ago (Aug. 3, 2025, 12:09 a.m.)
Issued 12 years, 4 months ago (April 8, 2013)
Published 12 years, 4 months ago (April 8, 2013)
Published Online 12 years, 4 months ago (April 8, 2013)
Funders 0

None

@article{Kumar_2013, title={Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes}, volume={3}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep01621}, DOI={10.1038/srep01621}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Kumar, Amit and Arruda, Thomas M. and Tselev, Alexander and Ivanov, Ilia N. and Lawton, Jamie S. and Zawodzinski, Thomas A. and Butyaev, Oleg and Zayats, Sergey and Jesse, Stephen and Kalinin, Sergei V.}, year={2013}, month=apr }