Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Chen, W. J., Zheng, Y., & Wang, B. (2012). Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load. Scientific Reports, 2(1).

Authors 3
  1. W. J. Chen (first)
  2. Yue Zheng (additional)
  3. Biao Wang (additional)
References 48 Referenced 67
  1. Scott, J. F. Nanoferroelectrics: statics and dynamics. J. Phys.: Condens. Matter 18, R361 (2006). / J. Phys.: Condens. Matter by JF Scott (2006)
  2. Rørvik, P. M., Grande, T. & Einarsrud, M.-A. One-dimensional nanostructures of ferroelectric perovskites. Adv. Mater. 23, 4007–4034 (2011). (10.1002/adma.201004676) / Adv. Mater. by PM Rørvik (2011)
  3. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005). (10.1103/PhysRevLett.94.246802) / Phys. Rev. Lett. by MY Zhuravlev (2005)
  4. Zheng, Y., Zheng, Y., Woo, C. H. & Wang B. Pulse-loaded ferroelectric nanowire as an alternating current source. Nano Lett. 8, 3131–3136 (2008). (10.1021/nl801294n) / Nano Lett. by Y Zheng (2008)
  5. Xu, S., Hansen, B. J. & Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010). (10.1038/ncomms1098) / Nat. Commun. by S Xu (2010)
  6. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010). (10.1038/nnano.2009.451) / Nat. Nanotech. by SY Yang (2010)
  7. Zheng, Y. & Woo, C. H. Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009). (10.1088/0957-4484/20/7/075401) / Nanotechnology by Y Zheng (2009)
  8. Luo, X., Wang, B. & Zheng, Y. Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. ACS Nano 5, 1649–1656 (2011). (10.1021/nn1031438) / ACS Nano by X Luo (2011)
  9. Cao, S. et al. Extreme chemical sensitivity of nonlinear conductivity in charge-ordered LuFe2O4 . Scientific Report 2, 330 (2012). (10.1038/srep00330) / Scientific Report by S Cao (2012)
  10. Fu, H. & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003). (10.1103/PhysRevLett.91.257601) / Phys. Rev. Lett. by H Fu (2003)
  11. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004). (10.1038/nature03107) / Nature by II Naumov (2004)
  12. Naumov, I. & Bratkovsky, A. M. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101, 107601 (2008). (10.1103/PhysRevLett.101.107601) / Phys. Rev. Lett. by I Naumov (2008)
  13. Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I. & Bellaiche, L. Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys.: Condens. Matter 20, 193201 (2008). / J. Phys.: Condens. Matter by S Prosandeev (2008)
  14. Gruverman, A. et al. Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008). / J. Phys.: Condens. Matter by A Gruverman (2008)
  15. Prosandeev, S. & Bellaiche, L. Hypertoroidal moment in complex dipolar structures. J. Mater. Sci. 44, 5235–5248 (2009). (10.1007/s10853-009-3460-5) / J. Mater. Sci. by S Prosandeev (2009)
  16. Hong, J. et al. Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010). (10.1103/PhysRevB.81.172101) / Phys. Rev. B by J Hong (2010)
  17. Schilling, A. et al. Domains in ferroelectric nanodots. Nano Lett. 9, 3359-3364 (2009). (10.1021/nl901661a) / Nano Lett. by A Schilling (2009)
  18. Rodriguez, B. J. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009). (10.1021/nl8036646) / Nano Lett. by BJ Rodriguez (2009)
  19. Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104, 207602 (2010). (10.1103/PhysRevLett.104.207602) / Phys. Rev. Lett. by Y Ivry (2010)
  20. McGilly, L. J., Schilling, A. & Gregg, J. M. Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/ quadrupole chains. Nano Lett. 10, 4200–4205 (2010). (10.1021/nl102566y) / Nano Lett. by LJ McGilly (2010)
  21. Stachiotti, M. G. & Sepliarsky, M. Toroidal ferroelectricity in PbTiO3 nanoparticles. Phys. Rev. Lett. 106, 137601 (2011). (10.1103/PhysRevLett.106.137601) / Phys. Rev. Lett. by MG Stachiotti (2011)
  22. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011). (10.1021/nl1041808) / Nano Lett. by CT Nelson (2011)
  23. McGilly, L. J. & Gregg, J. M. Polarization closure in PbZr(0.42)Ti(0.58)O3 nanodots. Nano Lett. 11, 4490–4495 (2011). (10.1021/nl2031103) / Nano Lett. by LJ McGilly (2011)
  24. McQuaid, R. G. P. et al. Mesoscale flux-closure domain formation in single-crystal BaTiO3 . Nat. Commun. 2, 404 (2011). (10.1038/ncomms1413) / Nat. Commun. by RGP McQuaid (2011)
  25. Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 . Nature Phys. 8, 81–88 (2011). (10.1038/nphys2132) / Nature Phys. by N Balke (2011)
  26. Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420–1423 (2011). (10.1126/science.1200605) / Science by CL Jia (2011)
  27. Schilling, A. et al. Shape-induced phase transition of domain patterns in ferroelectric platelets. Phys. Rev. B 84, 064110 (2011). (10.1103/PhysRevB.84.064110) / Phys. Rev. B by A Schilling (2011)
  28. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  29. Ponomareva, I., Naumov, I. & Bellaiche, L. Low-dimensional ferroelectrics under different electrical and mechanical boundary conditions: Atomistic simulations. Phys. Rev. B 72, 214118 (2005). (10.1103/PhysRevB.72.214118) / Phys. Rev. B by I Ponomareva (2005)
  30. Prosandeev, S. & Bellaiche, L. Characteristics and signatures of dipole vortices in ferroelectric nanodots: first-principles-based simulations and analytical expressions. Phys. Rev. B 75, 094102 (2007). (10.1103/PhysRevB.75.094102) / Phys. Rev. B by S Prosandeev (2007)
  31. Prosandeev, S., Ponomareva, I., Kornev, I., Naumov, I. & Bellaiche, L. Phys. Rev. Lett. Controlling toroidal moment by means of an inhomogeneous static field: an ab initio study. 96, 237601 (2006). (10.1103/PhysRevLett.96.237601) / Phys. Rev. Lett. by S Prosandeev (2006)
  32. Naumov, I. & Fu, H. Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007). (10.1103/PhysRevLett.98.077603) / Phys. Rev. Lett. by I Naumov (2007)
  33. Prosandeev, S., Ponomareva, I., Kornev, I. & Bellaiche, L. Control of vortices by homogeneous fields in asymmetric ferroelectric and ferromagnetic rings. Phys. Rev. Lett. 100, 047201 (2008). (10.1103/PhysRevLett.100.047201) / Phys. Rev. Lett. by S Prosandeev (2008)
  34. Prosandeev, S. & Bellaiche, L. Controlling double vortex states in low-dimensional dipolar systems. Phys. Rev. Lett. 101, 097203 (2008). (10.1103/PhysRevLett.101.097203) / Phys. Rev. Lett. by S Prosandeev (2008)
  35. Naumov, I. & Fu, H. Cooperative response of Pb(ZrTi)O3 nanoparticles to curled electric fields. Phys. Rev. Lett. 101, 197601 (2008). (10.1103/PhysRevLett.101.197601) / Phys. Rev. Lett. by I Naumov (2008)
  36. Wang, J. Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots. Appl. Phys. Lett. 97, 192901 (2010). (10.1063/1.3515847) / Appl. Phys. Lett. by J Wang (2010)
  37. Chen, W. J., Zheng, Y. & Wang, B. Phase field simulations of stress controlling the vortex domain structures in ferroelectric nanosheets. Appl. Phys. Lett. 100, 062901 (2012). (10.1063/1.3681379) / Appl. Phys. Lett. by WJ Chen (2012)
  38. Zheng, Y. & Woo, C. H. Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale. Appl. Phys. A: Mater. Sci. Process. 97, 617–626 (2009). (10.1007/s00339-009-5261-8) / Appl. Phys. A: Mater. Sci. Process. by Y Zheng (2009)
  39. Woo, C. H. & Zheng, Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A: Mater. Sci. Process. 91, 59–63 (2008). (10.1007/s00339-007-4355-4) / Appl. Phys. A: Mater. Sci. Process. by CH Woo (2008)
  40. Tagantsev, A. K. Landau Expansion for Ferroelectrics: Which Variable to Use? Ferroelectrics 375, 19–27 (2008). (10.1080/00150190802437746) / Ferroelectrics by AK Tagantsev (2008)
  41. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A. & Cross, L. E. Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62, 3331 (1987). (10.1063/1.339293) / J. Appl. Phys. by MJ Haun (1987)
  42. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 80, 1988 (1998). (10.1103/PhysRevLett.80.1988) / Phys. Rev. Lett. by NA Pertsev (1998)
  43. Li, Y. L., Cross, L. E. & Chen, L. Q. A phenomenological thermodynamic potential for BaTiO3 single crystals. J. Appl. Phys. 98, 064101 (2005). / Phys. by YL Li (2005)
  44. Wang, Y. L. et al. Anharmonicity of BaTiO3 single crystals. Phys. Rev. B 73, 132103 (2006). (10.1103/PhysRevB.73.132103) / Phys. Rev. B by YL Wang (2006)
  45. Kretschmer, R. & Binder, K. Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys. Rev. B 20, 1065 (1979). (10.1103/PhysRevB.20.1065) / Phys. Rev. B by R Kretschmer (1979)
  46. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of continuous media, Oxford University Press: New York, (1984). (10.1016/B978-0-08-030275-1.50007-2)
  47. Li, Y. L. et al. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427 (2002). (10.1063/1.1492025) / Appl. Phys. Lett. by YL Li (2002)
  48. Ishikawa, K. & Uemori, T. Surface relaxation in ferroelectric perovskites. Phys. Rev. B 60, 11841 (1999). (10.1103/PhysRevB.60.11841) / Phys. Rev. B by K Ishikawa (1999)
Dates
Type When
Created 12 years, 9 months ago (Nov. 12, 2012, 4:19 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 11:12 p.m.)
Indexed 4 months, 4 weeks ago (April 1, 2025, 1:02 p.m.)
Issued 12 years, 9 months ago (Nov. 12, 2012)
Published 12 years, 9 months ago (Nov. 12, 2012)
Published Online 12 years, 9 months ago (Nov. 12, 2012)
Funders 0

None

@article{Chen_2012, title={Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load}, volume={2}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep00796}, DOI={10.1038/srep00796}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Chen, W. J. and Zheng, Yue and Wang, Biao}, year={2012}, month=nov }