Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Bibliography

Wang, W., Loke, D., Shi, L., Zhao, R., Yang, H., Law, L.-T., Ng, L.-T., Lim, K.-G., Yeo, Y.-C., Chong, T.-C., & Lacaita, A. L. (2012). Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials. Scientific Reports, 2(1).

Authors 11
  1. Weijie Wang (first)
  2. Desmond Loke (additional)
  3. Luping Shi (additional)
  4. Rong Zhao (additional)
  5. Hongxin Yang (additional)
  6. Leong-Tat Law (additional)
  7. Lung-Tat Ng (additional)
  8. Kian-Guan Lim (additional)
  9. Yee-Chia Yeo (additional)
  10. Tow-Chong Chong (additional)
  11. Andrea L. Lacaita (additional)
References 40 Referenced 73
  1. Marinissen, E. J., Prince, B., Keitel-Schulz, D. & Zorian, Y. Challenges in Embedded Memory Design and Test. Proceedings of the conference on Design, Automation and Test in Europe (2005).
  2. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). (10.1103/PhysRevLett.21.1450) / Phys. Rev. Lett. by SR Ovshinsky (1968)
  3. Lai, S. & Lowrey, T. OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEDM Tech. Digest 803–806 (2001).
  4. Pirovano, A. et al. Scaling analysis of phase-change memory technology. IEDM Tech. Digest 699–702 (2003).
  5. Zhou, G. F. Materials aspects in phase change optical recording. Material Science and Engineering: A 304–306, 73–80 (2001). (10.1016/S0921-5093(00)01448-9) / Material Science and Engineering: A by GF Zhou (2001)
  6. Lee, S. H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007). (10.1038/nnano.2007.291) / Nat. Nanotechnol. by SH Lee (2007)
  7. Wang, W. J. et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 93, 043121-1-3 (2008). (10.1063/1.2963196) / Appl. Phys. Lett. by WJ Wang (2008)
  8. Bruns, G. et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108-1-3 (2009). (10.1063/1.3191670) / Appl. Phys. Lett. by G Bruns (2009)
  9. Loke, D. et al. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures. Nanotechnology 22, 254019-1-6 (2011). (10.1088/0957-4484/22/25/254019) / Nanotechnology by D Loke (2011)
  10. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  11. Wuttig, M. Phase-change materials: Towards a universal memory? Nat. Mater. 4, 265–266 (2005). (10.1038/nmat1359) / Nat. Mater. by M Wuttig (2005)
  12. Kolobov, A. V. Information storage: Around the phase-change cycle. Nat. Mater. 7, 351–353 (2008). (10.1038/nmat2171) / Nat. Mater. by AV Kolobov (2008)
  13. Kojima, R. et al. Nitrogen doping effect on phase change optical disks. Jpn. J. Appl. Phys. 37, 2098–2103 (1998). (10.1143/JJAP.37.2098) / Jpn. J. Appl. Phys. by R Kojima (1998)
  14. Yeh, T. T., Hsieh, T. E. & Shieh, H. P. D. Enhancement of Data Transfer Rate of Phase Change Optical Disk by Doping Nitrogen in Ge–In–Sb–Te Recording Layer. Jpn. J. Appl. Phys. 43, 5316–5320 (2004). (10.1143/JJAP.43.5316) / Jpn. J. Appl. Phys. by TT Yeh (2004)
  15. Kim, K. et al. Observation of molecular nitrogen in N-doped Ge2Sb2Te5 . Appl. Phys. Lett. 89, 243520-1-3 (2006). (10.1063/1.2408660) / Appl. Phys. Lett. by K Kim (2006)
  16. Kim, S. M., Shin, M. J., Choi, D. J., Lee, K. N., Hong, S. K. & Park, Y. J. Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory. Thin Solid Films 469–470, 322–326 (2004). (10.1016/j.tsf.2004.08.142) / Thin Solid Films by SM Kim (2004)
  17. Lai, Y. F. et al. Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory. J. Electron. Mater. 34, 176–181 (2005). (10.1007/s11664-005-0230-2) / J. Electron. Mater. by YF Lai (2005)
  18. Needleman, A. An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21–40 (1990). (10.1007/BF00018611) / Int. J. Fract. by A Needleman (1990)
  19. Penn, R. L. & Banfield, J. F. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science 281, 969–971 (1998). (10.1126/science.281.5379.969) / Science by RL Penn (1998)
  20. Kim, Y. & Rudd, M. E. Binary-encounter-dipole model for electron-impact ionization Phys. Rev. A 50, 3954–3967 (1994). (10.1103/PhysRevA.50.3954) / Rev. A by Y Kim (1994)
  21. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mat. 1, 217–224 (2002). (10.1038/nmat767) / Nat. Mat. by SK Sundaram (2002)
  22. Adler, D., Shur, M. S., Silver, M. & Ovshinsky, S. R. Threshold switching in chalcogenide-glass thin films. J. Appl. Phys 51, 3289–3309 (1980). (10.1063/1.328036) / J. Appl. Phys by D Adler (1980)
  23. Pirovano, A. et al. Electronic switching effect in phase-change memory cells. IEDM Tech. Digest 923–926 (2002). (10.1109/IEDM.2002.1175987)
  24. Frasinski, L. J., Codling, K., Hatherly, P., Barr, J., Ross, I. N. & Toner, W. T. Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser. Phys. Rev. Lett. 58, 2424–2427 (1987). (10.1103/PhysRevLett.58.2424) / Phys. Rev. Lett. by LJ Frasinski (1987)
  25. Dong, Y. & Molian, P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C--SiC by the femtosecond pulsed laser. Appl. Phys. Lett. 84, 10–12 (2004). (10.1063/1.1637948) / Appl. Phys. Lett. by Y Dong (2004)
  26. Graves, J. S. & Allen, R. E. Response to GaAs to fast intense laser pulses. Phys. Rev. B 58, 13627–13633 (1998). (10.1103/PhysRevB.58.13627) / Phys. Rev. B by JS Graves (1998)
  27. Coombs, J., Jongelis, A., Es-Spiekman, W. & Jacobs, B. Laser–induced crystallization phenomena in GeTe–based alloys. II. Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918–4928 (1995). (10.1063/1.359780) / J. Appl. Phys. by J Coombs (1995)
  28. Jeong, T. H., Kim, M. R., Seo, H., Kim, S. J. & Kim, S. Y. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J. Appl. Phys. 86, 774–778 (1999). (10.1063/1.370803) / J. Appl. Phys by TH Jeong (1999)
  29. Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240-1-3 (2004). (10.1063/1.1764591) / Appl. Phys. Lett. by J Kalb (2004)
  30. Christian, J. Transformation in Metals and Alloys. 2nd edn. (Pergamon Press, Oxford, 1975).
  31. Kelton, K. Crystal nucleation in liquids and glasses. Solid State Physics 45, 75–177 (1991). (10.1016/S0081-1947(08)60144-7) / Solid State Physics by K Kelton (1991)
  32. Hartman, P. & Perdok, W. G. On the relations between structure and morphology of crystals. I Acta Cryst. 8, 49–52, 521 (1955). (10.1107/S0365110X55000121) / I Acta Cryst. by P Hartman (1955)
  33. Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, 114310-1-7 (2008). (10.1063/1.2938076) / J. Appl. Phys. by S Raoux (2008)
  34. Wei, X. Q., Shi, L. P., Chong, T. C., Zhao, R. & Lee, H. K. Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices. Jpn. J. Appl. Phys. 46, 2211–2224 (2007) (10.1143/JJAP.46.2211) / Jpn. J. Appl. Phys. by XQ Wei (2007)
  35. Raoux, S., Retter, C. T., Deline, V. R., Philipp, J. B. & Lung, H. L. Scaling properties of phase change nanostructures and thin films. EPCOS (2006).
  36. Ohshima, N. Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357–8363 (1996). (10.1063/1.362548) / J. Appl. Phys. by N Ohshima (1996)
  37. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nat. Mat. 3, 703–708 (2004). (10.1038/nmat1215) / Nat. Mat. by AV Kolobov (2004)
  38. Santo, H., Hongo, Y., Tajima, K., Konishi, M. & Saiki, T. Sub-picosecond non-melting structure change in a GeSbTe film induced by femtosecond pulse excitation. EPCOS (2009).
  39. Kim, Y. et al. Change in electrical resistance and thermal stability of nitrogen incorporated Ge2Sb2Te5 films. Appl. Phys. Lett. 90, 021908-1-3 (2007). (10.1063/1.2431462) / Appl. Phys. Lett. by Y Kim (2007)
  40. Caravati, S. et al. First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5 . J. Phys.: Condens, Matter 23, 265801-1-13 (2011). / J. Phys.: Condens, Matter by S Caravati (2011)
Dates
Type When
Created 13 years, 4 months ago (April 11, 2012, 9:44 a.m.)
Deposited 5 months ago (March 25, 2025, 3:04 p.m.)
Indexed 5 months ago (March 26, 2025, 12:18 a.m.)
Issued 13 years, 4 months ago (April 11, 2012)
Published 13 years, 4 months ago (April 11, 2012)
Published Online 13 years, 4 months ago (April 11, 2012)
Funders 0

None

@article{Wang_2012, title={Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials}, volume={2}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/srep00360}, DOI={10.1038/srep00360}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Wang, Weijie and Loke, Desmond and Shi, Luping and Zhao, Rong and Yang, Hongxin and Law, Leong-Tat and Ng, Lung-Tat and Lim, Kian-Guan and Yeo, Yee-Chia and Chong, Tow-Chong and Lacaita, Andrea L.}, year={2012}, month=apr }