Crossref journal-article
Springer Science and Business Media LLC
Cell Death & Differentiation (297)
Bibliography

Rao, R. V., Ellerby, H. M., & Bredesen, D. E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death & Differentiation, 11(4), 372–380.

Authors 3
  1. R V Rao (first)
  2. H M Ellerby (additional)
  3. D E Bredesen (additional)
References 147 Referenced 774
  1. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13: 1211–1233 (10.1101/gad.13.10.1211) / Genes Dev. by RJ Kaufman (1999)
  2. Welihinda AA, Tirasophon W and Kaufman RJ (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 7: 293–300 / Gene Expr. by AA Welihinda (1999)
  3. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY and Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell. Biol. 3: 411–421 (10.1038/nrm829) / Nat. Rev. Mol. Cell. Biol. by RJ Kaufman (2002)
  4. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110: 1389–1398 (10.1172/JCI0216886) / J. Clin. Invest. by RJ Kaufman (2002)
  5. Ma Y and Hendershot LM (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 7: 222–229 (10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2) / Cell Stress Chaperones by Y Ma (2002)
  6. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110: 1383–1388 (10.1172/JCI0216784) / J. Clin. Invest. by D Ron (2002)
  7. Harding HP, Calfon M, Urano F, Novoa I and Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18: 575–599 (10.1146/annurev.cellbio.18.011402.160624) / Annu. Rev. Cell Dev. Biol. by HP Harding (2002)
  8. Paschen W and Frandsen A (2001) Endoplasmic reticulum dysfunction – a common denominator for cell injury in acute and degenerative diseases of the brain? J. Neurochem. 79: 719–725 (10.1046/j.1471-4159.2001.00623.x) / J. Neurochem. by W Paschen (2001)
  9. Paschen W and Doutheil J (1999) Disturbance of endoplasmic reticulum functions: a key mechanism underlying cell damage? Acta Neurochir. Suppl. 73: 1–5 (10.1007/978-3-7091-6391-7_1) / Acta Neurochir. Suppl. by W Paschen (1999)
  10. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10: 524–530 (10.1016/S0962-8924(00)01852-3) / Trends Cell Biol. by RR Kopito (2000)
  11. Sherman MY and Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32 (10.1016/S0896-6273(01)00177-5) / Neuron by MY Sherman (2001)
  12. Taylor JP, Hardy J and Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296: 1991–1995 (10.1126/science.1067122) / Science by JP Taylor (2002)
  13. Cleveland DW and Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2: 806–819 (10.1038/35097565) / Nat. Rev. Neurosci. by DW Cleveland (2001)
  14. Julien JP (2001) Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104: 581–591 (10.1016/S0092-8674(01)00244-6) / Cell by JP Julien (2001)
  15. Martin JB (1999) Molecular basis of the neurodegenerative disorders. N. Engl. J. Med. 340: 1970–1980 (10.1056/NEJM199906243402507) / N. Engl. J. Med. by JB Martin (1999)
  16. Dal Canto MC and Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145: 1271–1279 / Am. J. Pathol. by MC Dal Canto (1994)
  17. Guidetti P, Charles V, Chen EY, Reddy PH, Kordower JH, Whetsell Jr WO, Schwarcz R and Tagle DA (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp. Neurol. 169: 340–350 (10.1006/exnr.2000.7626) / Exp. Neurol. by P Guidetti (2001)
  18. Higgins CM, Jung C, Ding H and Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J. Neurosci. 22: RC215 (10.1523/JNEUROSCI.22-06-j0001.2002) / J. Neurosci. by CM Higgins (2002)
  19. Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F and MacDonald ME (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 9: 2789–2797 (10.1093/hmg/9.19.2789) / Hum. Mol. Genet. by P Hilditch-Maguire (2000)
  20. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM and Hayden MR (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23: 181–192 (10.1016/S0896-6273(00)80764-3) / Neuron by JG Hodgson (1999)
  21. Iannicola C, Moreno S, Oliverio S, Nardacci R, Ciofi-Luzzatto A and Piacentini M (2000) Early alterations in gene expression and cell morphology in a mouse model of Huntington's disease. J. Neurochem. 75: 830–839 (10.1046/j.1471-4159.2000.0750830.x) / J. Neurochem. by C Iannicola (2000)
  22. Mattson MP, Chan SL and Camandola S (2001) Presenilin mutations and calcium signaling defects in the nervous and immune systems. BioEssays 23: 733–744 (10.1002/bies.1103) / BioEssays by MP Mattson (2001)
  23. Lyons TJ, Liu H, Goto JJ, Nersissian A, Roe JA, Graden JA, Cafe C, Ellerby LM, Bredesen DE, Gralla EB and Valentine JS (1996) Mutations in copper–zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc. Natl. Acad. Sci. USA 93: 12240–12244 (10.1073/pnas.93.22.12240) / Proc. Natl. Acad. Sci. USA by TJ Lyons (1996)
  24. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F and Hayden MR (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. 18: 150–154 (10.1038/ng0298-150) / Nat. Genet. by D Martindale (1998)
  25. Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Philips AG and Hayden MR (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81: 811–823 (10.1016/0092-8674(95)90542-1) / Cell by J Nasir (1995)
  26. Reddy PH, Williams M and Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci. 22: 248–255 (10.1016/S0166-2236(99)01415-0) / Trends Neurosci. by PH Reddy (1999)
  27. Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM and Schapira AH (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47: 80–86 (10.1002/1531-8249(200001)47:1<80::AID-ANA13>3.0.CO;2-K) / Ann. Neurol. by SJ Tabrizi (2000)
  28. Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP and Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 97: 8093–8097 (10.1073/pnas.110078997) / Proc. Natl. Acad. Sci. USA by M Turmaine (2000)
  29. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL and MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat. Genet. 17: 404–410 (10.1038/ng1297-404) / Nat. Genet. by JK White (1997)
  30. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS and Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis [see comments]. Science 271: 515–518 (10.1126/science.271.5248.515) / Science by M Wiedau-Pazos (1996)
  31. Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer's disease. J. Mol. Neurosci. 17: 137–145 (10.1385/JMN:17:2:137) / J. Mol. Neurosci. by C Glabe (2001)
  32. Kakizuka A (1998) Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet. 14: 396–402 (10.1016/S0168-9525(98)01559-5) / Trends Genet. by A Kakizuka (1998)
  33. Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, Hussey J, Singleton A, Tanner C, Hardy J and Langston JW (2001) Lewy bodies and parkinsonism in families with Parkin mutations. Ann. Neurol. 50: 293–300 (10.1002/ana.1132) / Ann. Neurol. by M Farrer (2001)
  34. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y and Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902 (10.1016/S0092-8674(01)00407-X) / Cell by Y Imai (2001)
  35. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S and Momoi T (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11: 1505–1515 (10.1093/hmg/11.13.1505) / Hum. Mol. Genet. by Y Kouroku (2002)
  36. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K and Ichijo H (2002) Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid. Redox Signal. 4: 415–425 (10.1089/15230860260196218) / Antioxid. Redox Signal. by A Matsuzawa (2002)
  37. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A and Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16: 1345–1355 (10.1101/gad.992302) / Genes Dev. by H Nishitoh (2002)
  38. Williamson TL, Corson LB, Huang L, Burlingame A, Liu J, Bruijn LI and Cleveland DW (2000) Toxicity of ALS-linked SOD1 mutants. Science 288: 399 (10.1126/science.288.5465.399a) / Science by TL Williamson (2000)
  39. Auluck PK, Chan HY, Trojanowski JQ, Lee VM and Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295: 865–868 (10.1126/science.1067389) / Science by PK Auluck (2002)
  40. Martin SJ and Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82: 1–20 (10.1016/0092-8674(95)90422-0) / Cell by SJ Martin (1995)
  41. Earnshaw WC, Martins LM and Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383–424 (10.1146/annurev.biochem.68.1.383) / Annu. Rev. Biochem. by WC Earnshaw (1999)
  42. Salvesen GS and Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91: 443–446 (10.1016/S0092-8674(00)80430-4) / Cell by GS Salvesen (1997)
  43. Stroh C and Schulze-Osthoff K (1998) Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 5: 997–1000 (10.1038/sj.cdd.4400451) / Cell Death Differ. by C Stroh (1998)
  44. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM and Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276: 33869–33874 (10.1074/jbc.M102225200) / J. Biol. Chem. by RV Rao (2001)
  45. Nakagawa T and Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150: 887–894 (10.1083/jcb.150.4.887) / J. Cell Biol. by T Nakagawa (2000)
  46. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA and Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103 (10.1038/47513) / Nature by T Nakagawa (2000)
  47. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA and Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol. 139: 327–338 (10.1083/jcb.139.2.327) / J. Cell Biol. by FW Ng (1997)
  48. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S and Tohyama M (1999) 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J. Biol. Chem. 274: 6397–6404 (10.1074/jbc.274.10.6397) / J. Biol. Chem. by K Ozawa (1999)
  49. Liu H, Bowes III RC, van de Water B, Sillence C, Nagelkerke JF and Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J. Biol. Chem. 272: 21751–21759 (10.1074/jbc.272.35.21751) / J. Biol. Chem. by H Liu (1997)
  50. Tanaka S, Uehara T and Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J. Biol. Chem. 275: 10388–10393 (10.1074/jbc.275.14.10388) / J. Biol. Chem. by S Tanaka (2000)
  51. Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L and Coffin JD (2000) Deletion of Dad1 in mice induces an apoptosis-associated embryonic death. Genesis 26: 271–278 (10.1002/(SICI)1526-968X(200004)26:4<271::AID-GENE90>3.0.CO;2-E) / Genesis by JL Brewster (2000)
  52. Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R and Winoto A (2000) Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev. Biol. 220: 76–84 (10.1006/dbio.2000.9615) / Dev. Biol. by NA Hong (2000)
  53. Breckenridge DG, Nguyen M, Kuppig S, Reth M and Shore GC (2002) The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 99: 4331–4336 (10.1073/pnas.072088099) / Proc. Natl. Acad. Sci. USA by DG Breckenridge (2002)
  54. Germain M, Mathai JP and Shore GC (2002) BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J. Biol. Chem. 277: 18053–18060 (10.1074/jbc.M201235200) / J. Biol. Chem. by M Germain (2002)
  55. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300: 135–139 (10.1126/science.1081208) / Science by L Scorrano (2003)
  56. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730 (10.1126/science.1059108) / Science by MC Wei (2001)
  57. Germain M and Shore GC (2003) Cellular distribution of Bcl-2 family proteins. Sci. STKE 2003: pe10 (10.1126/stke.2003.173.pe10) / Sci. STKE by M Germain (2003)
  58. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol. Rev. 79: 683–701 (10.1152/physrev.1999.79.3.683) / Physiol. Rev. by HL Pahl (1999)
  59. Bertolotti A, Zhang Y, Hendershot LM, Harding HP and Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell. Biol. 2: 326–332 (10.1038/35014014) / Nat. Cell. Biol. by A Bertolotti (2000)
  60. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L and Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18: 7499–7509 (10.1128/MCB.18.12.7499) / Mol. Cell. Biol. by Y Shi (1998)
  61. Harding HP, Zhang Y and Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274 (10.1038/16729) / Nature by HP Harding (1999)
  62. Liu CY, Schroder M and Kaufman RJ (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275: 24881–24885 (10.1074/jbc.M004454200) / J. Biol. Chem. by CY Liu (2000)
  63. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M and Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6: 1099–1108 (10.1016/S1097-2765(00)00108-8) / Mol. Cell by HP Harding (2000)
  64. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S and Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165–1176 (10.1016/S1097-2765(01)00265-9) / Mol. Cell by D Scheuner (2001)
  65. Nikawa J and Yamashita S (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol. Microbiol. 6: 1441–1446 (10.1111/j.1365-2958.1992.tb00864.x) / Mol. Microbiol. by J Nikawa (1992)
  66. Cox JS, Shamu CE and Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206 (10.1016/0092-8674(93)90648-A) / Cell by JS Cox (1993)
  67. Mori K, Ma W, Gething MJ and Sambrook J (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743–756 (10.1016/0092-8674(93)90521-Q) / Cell by K Mori (1993)
  68. Sidrauski C and Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90: 1031–1039 (10.1016/S0092-8674(00)80369-4) / Cell by C Sidrauski (1997)
  69. Kawahara T, Yanagi H, Yura T and Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Cell. Biol. 8: 1845–1862 (10.1091/mbc.8.10.1845) / Mol. Cell. Biol. by T Kawahara (1997)
  70. Patil C and Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13: 349–355 (10.1016/S0955-0674(00)00219-2) / Curr. Opin. Cell Biol. by C Patil (2001)
  71. Sidrauski C, Cox JS and Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87: 405–413 (10.1016/S0092-8674(00)81361-6) / Cell by C Sidrauski (1996)
  72. Mori K, Ogawa N, Kawahara T, Yanagi H and Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc. Natl. Acad. Sci. USA 97: 4660–4665 (10.1073/pnas.050010197) / Proc. Natl. Acad. Sci. USA by K Mori (2000)
  73. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M and Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17: 5708–5717 (10.1093/emboj/17.19.5708) / EMBO J. by XZ Wang (1998)
  74. Tirasophon W, Welihinda AA and Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12: 1812–1824 (10.1101/gad.12.12.1812) / Genes Dev. by W Tirasophon (1998)
  75. Niwa M, Sidrauski C, Kaufman RJ and Walter P (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99: 691–702 (10.1016/S0092-8674(00)81667-0) / Cell by M Niwa (1999)
  76. Yoshida H, Haze K, Yanagi H, Yura T and Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273: 33741–33749 (10.1074/jbc.273.50.33741) / J. Biol. Chem. by H Yoshida (1998)
  77. Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891 (10.1016/S0092-8674(01)00611-0) / Cell by H Yoshida (2001)
  78. Brown MS, Ye J, Rawson RB and Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398 (10.1016/S0092-8674(00)80675-3) / Cell by MS Brown (2000)
  79. Haze K, Yoshida H, Yanagi H, Yura T and Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell. 10: 3787–3799 (10.1091/mbc.10.11.3787) / Mol. Biol. Cell. by K Haze (1999)
  80. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20: 6755–6767 (10.1128/MCB.20.18.6755-6767.2000) / Mol. Cell. Biol. by H Yoshida (2000)
  81. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS and Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6: 1355–1364 (10.1016/S1097-2765(00)00133-7) / Mol. Cell by J Ye (2000)
  82. Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S and Lee AS (2000) ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol. Cell. Biol. 20: 5096–5106 (10.1128/MCB.20.14.5096-5106.2000) / Mol. Cell. Biol. by M Li (2000)
  83. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21: 1239–1248 (10.1128/MCB.21.4.1239-1248.2001) / Mol. Cell. Biol. by H Yoshida (2001)
  84. Shen J, Chen X, Hendershot L and Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3: 99–111 (10.1016/S1534-5807(02)00203-4) / Dev. Cell by J Shen (2002)
  85. Lee AS (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell. Biol. 4: 267–273 (10.1016/0955-0674(92)90042-B) / Curr. Opin. Cell. Biol. by AS Lee (1992)
  86. Guo H, Tittle TV, Allen H and Maziarz RT (1998) Brefeldin A-mediated apoptosis requires the activation of caspases and is inhibited by Bcl-2. Exp. Cell Res. 245: 57–68 (10.1006/excr.1998.4235) / Exp. Cell Res. by H Guo (1998)
  87. Liu H, Miller E, van de Water B and Stevens JL (1998) Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J. Biol. Chem. 273: 12858–12862 (10.1074/jbc.273.21.12858) / J. Biol. Chem. by H Liu (1998)
  88. Lee J, Bruce-Keller AJ, Kruman Y, Chan SL and Mattson MP (1999) 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J. Neurosci. Res. 57: 48–61 (10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L) / J. Neurosci. Res. by J Lee (1999)
  89. Yu Z, Luo H, Fu W and Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp. Neurol. 155: 302–314 (10.1006/exnr.1998.7002) / Exp. Neurol. by Z Yu (1999)
  90. Hendershot LM, Wei JY, Gaut JR, Lawson B, Freiden PJ and Murti KG (1995) In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol. Cell. Biol. 6: 283–296 (10.1091/mbc.6.3.283) / Mol. Cell. Biol. by LM Hendershot (1995)
  91. Morris JA, Dorner AJ, Edwards CA, Hendershot LM and Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J. Biol. Chem. 272: 4327–4334 (10.1074/jbc.272.7.4327) / J. Biol. Chem. by JA Morris (1997)
  92. Xiao G, Chung TF, Pyun HY, Fine RE and Johnson RJ (1999) KDEL proteins are found on the surface of NG108-15 cells. Brain Res. Mol. Brain Res. 72: 121–128 (10.1016/S0169-328X(99)00188-6) / Brain Res. Mol. Brain Res. by G Xiao (1999)
  93. Triantafilou M, Fradelizi D and Triantafilou K (2001) Major histocompatibility class one molecule associates with glucose regulated protein (GRP) 78 on the cell surface. Hum. Immunol. 62: 764–770 (10.1016/S0198-8859(01)00269-5) / Hum. Immunol. by M Triantafilou (2001)
  94. Delpino A and Castelli M (2002) The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci. Rep. 22: 407–420 (10.1023/A:1020966008615) / Biosci. Rep. by A Delpino (2002)
  95. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM and Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514: 122–128 (10.1016/S0014-5793(02)02289-5) / FEBS Lett. by RV Rao (2002)
  96. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ and Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. (10.1074/jbc.M212328200)
  97. Wiest DL, Bhandoola A, Punt J, Kreibich G, McKean D and Singer A (1997) Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of ‘ER-resident’ molecular chaperones. Proc. Natl. Acad. Sci. USA 94: 1884–1889 (10.1073/pnas.94.5.1884) / Proc. Natl. Acad. Sci. USA by DL Wiest (1997)
  98. Booth C and Koch GL (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737 (10.1016/0092-8674(89)90019-6) / Cell by C Booth (1989)
  99. Suzuki T, Yan Q and Lennarz WJ (1998) Complex, two-way traffic of molecules across the membrane of the endoplasmic reticulum. J. Biol. Chem. 273: 10083–10086 (10.1074/jbc.273.17.10083) / J. Biol. Chem. by T Suzuki (1998)
  100. Henle KJ, Jethmalani SM and Nagle WA (1998) Stress proteins and glycoproteins [Review]. Int. J. Mol. Med. 1: 25–32 / Int. J. Mol. Med. by KJ Henle (1998)
  101. Reddy RK, Lu J and Lee AS (1999) The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274: 28476–28483 (10.1074/jbc.274.40.28476) / J. Biol. Chem. by RK Reddy (1999)
  102. Hockenbery D, Nunez G, Milliman C, Schreiber RD and Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336 (10.1038/348334a0) / Nature by D Hockenbery (1990)
  103. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP and Korsmeyer SJ (1990) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 144: 3602–3610 (10.4049/jimmunol.144.9.3602) / J. Immunol. by G Nunez (1990)
  104. Hockenbery DM, Zutter M, Hickey W, Nahm M and Korsmeyer SJ (1991) Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA 88: 6961–6965 (10.1073/pnas.88.16.6961) / Proc. Natl. Acad. Sci. USA by DM Hockenbery (1991)
  105. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL and Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251 (10.1016/0092-8674(93)80066-N) / Cell by DM Hockenbery (1993)
  106. Korsmeyer SJ, McDonnell TJ, Nunez G, Hockenbery D and Young R (1990) Bcl-2: B cell life, death and neoplasia. Curr. Top. Dev. Biol. 166: 203–207 / Curr. Top. Dev. Biol. by SJ Korsmeyer (1990)
  107. Vaux DL, Weissman IL and Kim SK (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258: 1955–1957 (10.1126/science.1470921) / Science by DL Vaux (1992)
  108. Vaux DL, Aguila HL and Weissman IL (1992) Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int. Immunol. 4: 821–824 (10.1093/intimm/4.7.821) / Int. Immunol. by DL Vaux (1992)
  109. Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aime-Sempe C, Bodrug S, Kitada S and Hanada M (1996) BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell. Biochem. 60: 23–32 (10.1002/(SICI)1097-4644(19960101)60:1<23::AID-JCB5>3.0.CO;2-5) / J. Cell. Biochem. by JC Reed (1996)
  110. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL and Distelhorst CW (1994) Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl. Acad. Sci. USA 91: 6569–6573 (10.1073/pnas.91.14.6569) / Proc. Natl. Acad. Sci. USA by M Lam (1994)
  111. Thomenius MJ, Wang NS, Reineks EZ, Wang Z and Distelhorst CW (2003) Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J. Biol. Chem. 278: 6243–6250 (10.1074/jbc.M208878200) / J. Biol. Chem. by MJ Thomenius (2003)
  112. Vander Heiden MG and Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell. Biol. 1: E209–E216 (10.1038/70237) / Nat. Cell. Biol. by MG Vander Heiden (1999)
  113. Adams JM and Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26: 61–66 (10.1016/S0968-0004(00)01740-0) / Trends Biochem. Sci. by JM Adams (2001)
  114. Rudner J, Jendrossek V and Belka C (2002) New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis 7: 441–447 (10.1023/A:1020087108926) / Apoptosis by J Rudner (2002)
  115. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG and McConkey DJ (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J. Biol. Chem. 277: 20301–20308 (10.1074/jbc.M201604200) / J. Biol. Chem. by LK Nutt (2002)
  116. Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ and Swisher SG (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem. 277: 9219–9225 (10.1074/jbc.M106817200) / J. Biol. Chem. by LK Nutt (2002)
  117. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE and Oltvai ZN (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol. 4: 327–332 / Semin. Cancer Biol. by SJ Korsmeyer (1993)
  118. Bredesen DE (1996) Keeping neurons alive: the molecular control of apoptosis (part I). Neuroscientist 2: 181–190 (10.1177/107385849600200313) / Neuroscientist by DE Bredesen (1996)
  119. Bredesen DE (1996) Keeping neurons alive: the molecular control of apoptosis (part II). Neuroscientist 2: 181–190 (10.1177/107385849600200313) / Neuroscientist by DE Bredesen (1996)
  120. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM and Ron D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16: 4273–4280 (10.1128/MCB.16.8.4273) / Mol. Cell. Biol. by XZ Wang (1996)
  121. Barone MV, Crozat A, Tabaee A, Philipson L and Ron D (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8: 453–464 (10.1101/gad.8.4.453) / Genes Dev. by MV Barone (1994)
  122. Zhan Q, Lord KA, Alamo Jr I, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA and Fornace Jr AJ (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14: 2361–2371 (10.1128/MCB.14.4.2361) / Mol. Cell. Biol. by Q Zhan (1994)
  123. Friedman AD (1996) GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res. 56: 3250–3256 / Cancer Res. by AD Friedman (1996)
  124. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL and Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12: 982–995 (10.1101/gad.12.7.982) / Genes Dev. by H Zinszner (1998)
  125. McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21: 1249–1259 (10.1128/MCB.21.4.1249-1259.2001) / Mol. Cell. Biol. by KD McCullough (2001)
  126. Rao R, Poksay K, Castro-Obregon S, Schiilling B, Row RH, dcl Rio G, Gibson BW, Ellerby HM and Bredesen DE (2004) Molecular components of a cell death pathway activated by endoplasmic roticulum stross. J. Biol. Chem. 279: 177–187 (10.1074/jbc.M304490200) / J. Biol. Chem. by R Rao (2004)
  127. Vale RD (2000) AAA proteins. Lords of the ring. J. Cell Biol. 150: F13–9 (10.1083/jcb.150.1.F13) / J. Cell Biol. by RD Vale (2000)
  128. Lord JM, Ceriotti A and Roberts LM (2002) ER dislocation: Cdc48p/p97 gets into the AAAct. Curr. Biol. 12: R182–4 (10.1016/S0960-9822(02)00738-8) / Curr. Biol. by JM Lord (2002)
  129. Dalal S and Hanson PI (2001) Membrane traffic: what drives the AAA motor? Cell 104: 5–8 (10.1016/S0092-8674(01)00186-6) / Cell by S Dalal (2001)
  130. Kobayashi T, Tanaka K, Inoue K and Kakizuka A (2002) Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells. J. Biol. Chem. 277: 47358–47365 (10.1074/jbc.M207783200) / J. Biol. Chem. by T Kobayashi (2002)
  131. Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel AH, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S and Kakizuka A (2001) VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8: 977–984 (10.1038/sj.cdd.4400907) / Cell Death Differ. by M Hirabayashi (2001)
  132. Vito P, Lacana E and D'Adamio L (1996) Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 271: 521–525 (10.1126/science.271.5248.521) / Science by P Vito (1996)
  133. Vito P, Pellegrini L, Guiet C and D'Adamio L (1999) Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J. Biol. Chem. 274: 1533–1540 (10.1074/jbc.274.3.1533) / J. Biol. Chem. by P Vito (1999)
  134. Lacana E, Ganjei JK, Vito P and D'Adamio L (1997) Dissociation of apoptosis and activation of IL-1beta-converting enzyme/Ced-3 proteases by ALG-2 and the truncated Alzheimer's gene ALG-3. J. Immunol. 158: 5129–5135 (10.4049/jimmunol.158.11.5129) / J. Immunol. by E Lacana (1997)
  135. Jung YS, Kim KS, Kim KD, Lim JS, Kim JW and Kim E (2001) Apoptosis-linked gene 2 binds to the death domain of Fas and dissociates from Fas during Fas-mediated apoptosis in Jurkat cells. Biochem. Biophys. Res. Commun. 288: 420–426 (10.1006/bbrc.2001.5769) / Biochem. Biophys. Res. Commun. by YS Jung (2001)
  136. Kilic M, Schafer R, Hoppe J and Kagerhuber U (2002) Formation of noncanonical high molecular weight caspase-3 and -6 complexes and activation of caspase-12 during serum starvation induced apoptosis in AKR-2B mouse fibroblasts. Cell Death Differ. 9: 125–137 (10.1038/sj.cdd.4400968) / Cell Death Differ. by M Kilic (2002)
  137. Hoppe J, Kilic M, Hoppe V, Sachinidis A and Kagerhuber U (2002) Formation of caspase-3 complexes and fragmentation of caspase-12 during anisomycin-induced apoptosis in AKR-2B cells without aggregation of Apaf-1. Eur. J. Cell Biol. 81: 567–576 (10.1078/0171-9335-00276) / Eur. J. Cell Biol. by J Hoppe (2002)
  138. Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, Del Rio G, Bredesen DE and Ellerby HM (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277: 21836–21842 (10.1074/jbc.M202726200) / J. Biol. Chem. by RV Rao (2002)
  139. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T and Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276: 13935–13940 (10.1074/jbc.M010677200) / J. Biol. Chem. by T Yoneda (2001)
  140. Morishima N, Nakanishi K, Takenouchi H, Shibata T and Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277: 34287–34294 (10.1074/jbc.M204973200) / J. Biol. Chem. by N Morishima (2002)
  141. Oubrahim H, Chock PB and Stadtman ER (2002) Manganese(II) induces apoptotic cell death in NIH3T3 cells via a caspase-12-dependent pathway. J. Biol. Chem. 277: 20135–20138 (10.1074/jbc.C200226200) / J. Biol. Chem. by H Oubrahim (2002)
  142. Bitko V and Barik S (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J. Cell. Biochem. 80: 441–454 (10.1002/1097-4644(20010301)80:3<441::AID-JCB170>3.0.CO;2-C) / J. Cell. Biochem. by V Bitko (2001)
  143. Fischer H, Koenig U, Eckhart L and Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293: 722–726 (10.1016/S0006-291X(02)00289-9) / Biochem. Biophys. Res. Commun. by H Fischer (2002)
  144. Breckenridge DG, Stojanovic M, Marcellus RC and Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160: 1115–1127 (10.1083/jcb.200212059) / J. Cell Biol. by DG Breckenridge (2003)
  145. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM and Hunt DW (1998) Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett. 437: 5–10 (10.1016/S0014-5793(98)01193-4) / FEBS Lett. by DJ Granville (1998)
  146. Maatta J, Hallikas O, Welti S, Hilden P, Schroder J and Kuismanen E (2000) Limited caspase cleavage of human BAP31. FEBS Lett. 484: 202–206 (10.1016/S0014-5793(00)02159-1) / FEBS Lett. by J Maatta (2000)
  147. Ng FW and Shore GC (1998) Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor. J. Biol. Chem. 273: 3140–3143 (10.1074/jbc.273.6.3140) / J. Biol. Chem. by FW Ng (1998)
Dates
Type When
Created 21 years, 6 months ago (Feb. 6, 2004, 5:19 a.m.)
Deposited 2 years, 3 months ago (May 17, 2023, 8:22 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 5, 2025, 8:57 a.m.)
Issued 21 years, 6 months ago (Feb. 6, 2004)
Published 21 years, 6 months ago (Feb. 6, 2004)
Published Online 21 years, 6 months ago (Feb. 6, 2004)
Published Print 21 years, 4 months ago (April 1, 2004)
Funders 0

None

@article{Rao_2004, title={Coupling endoplasmic reticulum stress to the cell death program}, volume={11}, ISSN={1476-5403}, url={http://dx.doi.org/10.1038/sj.cdd.4401378}, DOI={10.1038/sj.cdd.4401378}, number={4}, journal={Cell Death &amp; Differentiation}, publisher={Springer Science and Business Media LLC}, author={Rao, R V and Ellerby, H M and Bredesen, D E}, year={2004}, month=feb, pages={372–380} }