Crossref journal-article
Springer Science and Business Media LLC
Cell Death & Differentiation (297)
Bibliography

Oyadomari, S., & Mori, M. (2003). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death & Differentiation, 11(4), 381–389.

Authors 2
  1. S Oyadomari (first)
  2. M Mori (additional)
References 107 Referenced 2,354
  1. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation Trends. Cell Biol. 10: 524–530 / Cell Biol. by RR Kopito (2000)
  2. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13: 1211–1233 (10.1101/gad.13.10.1211) / Genes Dev. by RJ Kaufman (1999)
  3. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101: 451–454 (10.1016/S0092-8674(00)80855-7) / Cell by K Mori (2000)
  4. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110: 1383–1388 (10.1172/JCI0216784) / J. Clin. Invest. by D Ron (2002)
  5. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110: 1389–1398 (10.1172/JCI0216886) / J. Clin. Invest. by RJ Kaufman (2002)
  6. Harding HP, Calfon M, Urano F, Novoa I and Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18: 575–599 (10.1146/annurev.cellbio.18.011402.160624) / Annu. Rev. Cell Dev. Biol. by HP Harding (2002)
  7. Kozutsumi MY, Segal M, Normington K, Gething MJ and Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462–464 (10.1038/332462a0) / Nature by MY Kozutsumi (1988)
  8. Yoshida H, Haze K, Yanagi H, Yura T and Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273: 33741–33749 (10.1074/jbc.273.50.33741) / J. Biol. Chem. by H Yoshida (1998)
  9. Caspersen C, Pedersen PS and Treiman M (2000) The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J. Biol. Chem. 275: 22363–22372 (10.1074/jbc.M001569200) / J. Biol. Chem. by C Caspersen (2000)
  10. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T and Leiden JM (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11: 619–633 (10.1016/S1097-2765(03)00105-9) / Mol. Cell by HP Harding (2003)
  11. Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88: 427–430 (10.1016/S0092-8674(00)81881-4) / Cell by RR Kopito (1997)
  12. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS and Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101: 249–258 (10.1016/S0092-8674(00)80835-1) / Cell by KJ Travers (2000)
  13. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K and Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4: 265–271 (10.1016/S1534-5807(03)00022-4) / Dev. Cell by H Yoshida (2003)
  14. Pahl HL, Sester M, Burgert HG and Baeuerle PA (1996) Activation of transcription factor NF-kappaB by the adenovirus E3/19 K protein requires its ER retention. J. Cell Biol. 132: 511–522 (10.1083/jcb.132.4.511) / J. Cell Biol. by HL Pahl (1996)
  15. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR and Wek RC (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol. Cell. Biol. 23: 5651–5663 (10.1128/MCB.23.16.5651-5663.2003) / Mol. Cell. Biol. by HY Jiang (2003)
  16. Ferri KF and Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3: E255–E263 (10.1038/ncb1101-e255) / Nat. Cell Biol. by KF Ferri (2001)
  17. Oyadomari S, Araki E and Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7: 335–345 (10.1023/A:1016175429877) / Apoptosis by S Oyadomari (2002)
  18. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666 (10.1126/science.287.5453.664) / Science by F Urano (2000)
  19. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A and Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16: 1345–1355 (10.1101/gad.992302) / Genes Dev. by H Nishitoh (2002)
  20. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA and Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103 (10.1038/47513) / Nature by T Nakagawa (2000)
  21. Fischer H, Koenig U, Eckhart L and Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293: 722–726 (10.1016/S0006-291X(02)00289-9) / Biochem. Biophys. Res. Commun. by H Fischer (2002)
  22. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730 (10.1126/science.1059108) / Science by MC Wei (2001)
  23. Matsumoto M, Minami M, Takeda K, Sakao Y and Akira S (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395: 143–147 (10.1016/0014-5793(96)01016-2) / FEBS Lett. by M Matsumoto (1996)
  24. Ron D and Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6: 439–453 (10.1101/gad.6.3.439) / Genes Dev. by D Ron (1992)
  25. Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF and Ron D (1996) Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol. Cell. Biol. 16: 1479–1489 (10.1128/MCB.16.4.1479) / Mol. Cell. Biol. by M Ubeda (1996)
  26. Wang XZ and Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272: 1347–1349 (10.1126/science.272.5266.1347) / Science by XZ Wang (1996)
  27. Maytin EV, Ubeda M, Lin JC and Habener JF (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp. Cell Res. 267: 193–204 (10.1006/excr.2001.5248) / Exp. Cell Res. by EV Maytin (2001)
  28. Barone MV, Crozat A, Tabaee A, Philipson L and Ron D (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8: 453–464 (10.1101/gad.8.4.453) / Genes Dev. by MV Barone (1994)
  29. Ubeda M, Vallejo M and Habener JF (1999) CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol. Cell. Biol. 19: 7589–7599 (10.1128/MCB.19.11.7589) / Mol. Cell. Biol. by M Ubeda (1999)
  30. Fornace Jr AJ, Alamo Jr I and Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85: 8800–8804 (10.1073/pnas.85.23.8800) / Proc. Natl. Acad. Sci. USA by AJ Fornace Jr (1988)
  31. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM and Ron D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16: 4273–4280 (10.1128/MCB.16.8.4273) / Mol. Cell. Biol. by XZ Wang (1996)
  32. Okada T, Yoshida H, Akazawa R, Negishi M and Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366: 585–594 (10.1042/bj20020391) / Biochem. J. by T Okada (2002)
  33. Bertolotti A, Zhang Y, Hendershot LM, Harding HP and Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2: 326–332 (10.1038/35014014) / Nat. Cell Biol. by A Bertolotti (2000)
  34. Sommer T and Jarosch E (2002) BiP binding keeps ATF6 at bay. Dev. Cell 3: 1–2 (10.1016/S1534-5807(02)00210-1) / Dev. Cell by T Sommer (2002)
  35. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS and Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6: 1355–1364 (10.1016/S1097-2765(00)00133-7) / Mol. Cell by J Ye (2000)
  36. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20: 6755–6767 (10.1128/MCB.20.18.6755-6767.2000) / Mol. Cell. Biol. by H Yoshida (2000)
  37. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21: 1239–1248 (10.1128/MCB.21.4.1239-1248.2001) / Mol. Cell. Biol. by H Yoshida (2001)
  38. Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891 (10.1016/S0092-8674(01)00611-0) / Cell by H Yoshida (2001)
  39. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG and Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96 (10.1038/415092a) / Nature by M Calfon (2002)
  40. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K and Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16: 452–466 (10.1101/gad.964702) / Genes Dev. by K Lee (2002)
  41. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ and Prywes R (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275: 27013–27020 (10.1016/S0021-9258(19)61473-0) / J. Biol. Chem. by Y Wang (2000)
  42. Ubeda M and Habener JF (2000) CHOP gene expression in response to endoplasmic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Res. 28: 4987–4997 (10.1093/nar/28.24.4987) / Nucleic Acids Res. by M Ubeda (2000)
  43. Roy B and Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. 27: 1437–1443 (10.1093/nar/27.6.1437) / Nucleic Acids Res. by B Roy (1999)
  44. Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M and Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol. Cell. Biol. 20: 7192–7204 (10.1128/MCB.20.19.7192-7204.2000) / Mol. Cell. Biol. by A Bruhat (2000)
  45. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S and Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165–1176 (10.1016/S1097-2765(01)00265-9) / Mol. Cell by D Scheuner (2001)
  46. Harding HP, Novoa II, Zhang Y, Zeng H, Wek R, Schapira M and Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6: 1099–1108 (10.1016/S1097-2765(00)00108-8) / Mol. Cell by HP Harding (2000)
  47. Chen BP, Wolfgang CD and Hai T (1996) Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol. Cell. Biol. 16: 1157–1168 (10.1128/MCB.16.3.1157) / Mol. Cell. Biol. by BP Chen (1996)
  48. Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ and Hai T (1997) gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol. Cell. Biol. 17: 6700–6707 (10.1128/MCB.17.11.6700) / Mol. Cell. Biol. by CD Wolfgang (1997)
  49. Fawcett TW, Martindale JL, Guyton KZ, Hai T and Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem. J. 339: 135–141 (10.1042/bj3390135) / Biochem. J. by TW Fawcett (1999)
  50. Estes SD, Stoler DL and Anderson GR (1995) Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp. Cell Res. 220: 47–54 (10.1006/excr.1995.1290) / Exp. Cell Res. by SD Estes (1995)
  51. Bartlett JD, Luethy JD, Carlson SG, Sollott SJ and Holbrook NJ (1992) Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+ increases transcriptional activity and mRNA stability. J. Biol. Chem. 267: 20465–20470 (10.1016/S0021-9258(19)88725-2) / J. Biol. Chem. by JD Bartlett (1992)
  52. Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M and Fafournoux P (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J. Biol. Chem. 272: 17588–17593 (10.1074/jbc.272.28.17588) / J. Biol. Chem. by A Bruhat (1997)
  53. Schmitt-Ney M and Habener JF (2000) CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J. Biol. Chem. 275: 40839–40845 (10.1074/jbc.M007440200) / J. Biol. Chem. by M Schmitt-Ney (2000)
  54. Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D and Fafournoux P (2001) Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Res. 29: 4341–4351 (10.1093/nar/29.21.4341) / Nucleic Acids Res. by C Jousse (2001)
  55. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T and Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2: 222–228 (10.1093/embo-reports/kve046) / EMBO Rep. by K Tobiume (2001)
  56. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E and Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl. Acad. Sci. USA 98: 10845–10850 (10.1073/pnas.191207498) / Proc. Natl. Acad. Sci. USA by S Oyadomari (2001)
  57. Gotoh T, Oyadomari S Mori K and Mori M (2002) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J. Biol. Chem. 277: 12343–12350 (10.1074/jbc.M107988200) / J. Biol. Chem. by T Gotoh (2002)
  58. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL and Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12: 982–995 (10.1101/gad.12.7.982) / Genes Dev. by H Zinszner (1998)
  59. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E and Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109: 525–532 (10.1172/JCI0214550) / J. Clin. Invest. by S Oyadomari (2002)
  60. Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, Zinszner H and Ron D (1998) Identification of novel stress-induced genes downstream of chop. EMBO J. 17: 3619–3630 (10.1093/emboj/17.13.3619) / EMBO J. by XZ Wang (1998)
  61. Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H and Ron D (1999) CHOP-dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol. Cell. Biol. 19: 495–504 (10.1128/MCB.19.1.495) / Mol. Cell. Biol. by J Sok (1999)
  62. McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21: 1249–1259 (10.1128/MCB.21.4.1249-1259.2001) / Mol. Cell. Biol. by KD McCullough (2001)
  63. Gotoh T, Takeda K, Oyadomari S and Mori M . hsp70-DnaJ chaperone pair prevents nitric oxide-, CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ. in press (10.1038/sj.cdd.4401369)
  64. Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ and Timchenko NA (2001) C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell 8: 817–828 (10.1016/S1097-2765(01)00366-5) / Mol. Cell by H Wang (2001)
  65. Wang H, Goode T, Iakova P, Albrecht JH and Timchenko NA (2002) C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J. 21: 930–941 (10.1093/emboj/21.5.930) / EMBO J. by H Wang (2002)
  66. Kawai T, Matsumoto M, Takeda K, Sanjo H and Akira S (1998) ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell. Biol. 18: 1642–1651 (10.1128/MCB.18.3.1642) / Mol. Cell. Biol. by T Kawai (1998)
  67. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, Grusby MJ and Glimcher LH (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev. 14: 152–157 (10.1101/gad.14.2.152) / Genes Dev. by AM Reimold (2000)
  68. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD and Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7: 1153–1163 (10.1016/S1097-2765(01)00264-7) / Mol. Cell by HP Harding (2001)
  69. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K and Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22: 3864–3874 (10.1128/MCB.22.11.3864-3874.2002) / Mol. Cell. Biol. by P Zhang (2002)
  70. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F and Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412: 300–307 (10.1038/35085509) / Nature by AM Reimold (2001)
  71. Harding HP, Zhang Y, Bertolotti A, Zeng H and Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5: 897–904 (10.1016/S1097-2765(00)80330-5) / Mol. Cell by HP Harding (2000)
  72. Coutts M, Cui K, Davis KL, Keutzer JC and Sytkowski AJ (1999) Regulated expression and functional role of the transcription factor CHOP (GADD153) in erythroid growth and differentiation. Blood 93: 3369–3378 (10.1182/blood.V93.10.3369.410k11_3369_3378) / Blood by M Coutts (1999)
  73. Maytin EV and Habener JF (1998) Transcription factors C/EBP alpha, C/EBP beta, and CHOP (Gadd153) expressed during the differentiation program of keratinocytes in vitro and in vivo. J. Invest. Dermatol. 110: 238–246 (10.1046/j.1523-1747.1998.00123.x) / J. Invest. Dermatol. by EV Maytin (1998)
  74. Mathis D, Vence L and Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414: 792–798 (10.1038/414792a) / Nature by D Mathis (2001)
  75. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY and Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell. Biol. 3: 411–421 (10.1038/nrm829) / Nat. Rev. Mol. Cell. Biol. by RJ Kaufman (2002)
  76. Harding HP and Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 (Suppl 3): S455–S461 (10.2337/diabetes.51.2007.S455) / Diabetes by HP Harding (2002)
  77. Araki E, Oyadomari S and Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern. Med. 42: 7–14 (10.2169/internalmedicine.42.7) / Intern. Med. by E Araki (2003)
  78. Thornton C (1997) Autopsy findings in the Wolcott–Rallison syndrome. Pediatr. Pathol. Lab. Med. 17: 487–496 (10.1080/15513819709168589) / Pediatr. Pathol. Lab. Med. by C Thornton (1997)
  79. Nicolino M, Delepine M, Barrett T, Golamaully M, Lathrop GM and Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25: 406–409 (10.1038/78085) / Nat. Genet. by M Nicolino (2000)
  80. Eizirik DL and Mandrup-Poulsen T (2001) A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44: 2115–2133 (10.1007/s001250100021) / Diabetologia by DL Eizirik (2001)
  81. Heller B, Wang ZQ, Wagner EF, Radons J, Burkle A, Fehsel K, Burkart V and Kolb H (1995) Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270: 11176–11180 (10.1074/jbc.270.19.11176) / J. Biol. Chem. by B Heller (1995)
  82. Messmer UK and Brune B (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319: 299–305 (10.1042/bj3190299) / Biochem. J. by UK Messmer (1996)
  83. Viner RI, Ferrington DA, Williams TD, Bigelow DJ and Schoneich C (1999) Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem. J. 340: 657–669 (10.1042/bj3400657) / Biochem. J. by RI Viner (1999)
  84. Xu KY, Huso DL, Dawson TM, Bredt DS and Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 96: 657–662 (10.1073/pnas.96.2.657) / Proc. Natl. Acad. Sci. USA by KY Xu (1999)
  85. Xu L, Eu JP, Meissner G and Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279: 234–237 (10.1126/science.279.5348.234) / Science by L Xu (1998)
  86. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T and Eizirik DL (2001) Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes 50: 909–920 (10.2337/diabetes.50.5.909) / Diabetes by AK Cardozo (2001)
  87. Yoshioka M, Kayo T, Ikeda T and Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46: 887–894 (10.2337/diab.46.5.887) / Diabetes by M Yoshioka (1997)
  88. Kayo T and Koizumi A (1998) Mapping of murine diabetogenic gene mody on chromosome 7 at D7Mit258 and its involvement in pancreatic islet and beta cell development during the perinatal period. J. Clin. Invest. 101: 2112–2118 (10.1172/JCI1842) / J. Clin. Invest. by T Kayo (1998)
  89. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, Takata K, Koizumi A and Izumi T (1999) A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J. Clin. Invest. 103: 27–37 (10.1172/JCI4431) / J. Clin. Invest. by J Wang (1999)
  90. Leroux L, Desbois P, Lamotte L, Duvillie B, Cordonnier N, Jackerott M, Jami J, Bucchini D and Joshi RL (2001) Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 50 (Suppl 1): S150–S153 (10.2337/diabetes.50.2007.S150) / Diabetes by L Leroux (2001)
  91. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, Siesjo BK and Liu CL (2001) Protein aggregation after focal brain ischemia and reperfusion. J. Cereb. Blood Flow Metab. 21: 865–875 (10.1097/00004647-200107000-00012) / J. Cereb. Blood Flow Metab. by BR Hu (2001)
  92. Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, Zhang P, Ron D, Harding HP, Chen JJ, Han A, White BC, Krause GS and DeGracia DJ (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2 alpha kinase, PERK. J. Neurochem. 77: 1418–1421 (10.1046/j.1471-4159.2001.00387.x) / J. Neurochem. by R Kumar (2001)
  93. Paschen W, Gissel C, Linden T, Althausen S and Doutheil J (1998) Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res. Mol. Brain Res. 60: 115–122 (10.1016/S0169-328X(98)00180-6) / Brain Res. Mol. Brain Res. by W Paschen (1998)
  94. Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP and Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol. 50: 93–103 (10.1002/ana.1073) / Ann. Neurol. by K Jin (2001)
  95. Doutheil J, Althausen S, Treiman M and Paschen W (2000) Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 27: 107–115 (10.1054/ceca.1999.0099) / Cell Calcium by J Doutheil (2000)
  96. Kohno K, Higuchi T, Ohta S, Kumon Y and Sakaki S (1997) Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci. Lett. 224: 17–20 (10.1016/S0304-3940(97)13459-0) / Neurosci. Lett. by K Kohno (1997)
  97. Iadecola C, Zhang F, Casey R, Nagayama M and Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17: 9157–9164 (10.1523/JNEUROSCI.17-23-09157.1997) / J. Neurosci. by C Iadecola (1997)
  98. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada J-I, Ushio Y and Mori M . Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ in press (10.1038/sj.cdd.4401365)
  99. Milhavet O, Martindale JL, Camandola S, Chan SL, Gary DS, Cheng A, Holbrook NJ and Mattson MP (2002) Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. J. Neurochem. 83: 673–681 (10.1046/j.1471-4159.2002.01165.x) / J. Neurochem. by O Milhavet (2002)
  100. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M and Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol. 1: 479–485 (10.1038/70265) / Nat. Cell Biol. by T Katayama (1999)
  101. Sato N, Urano F, Yoon Leem J, Kim SH, Li M, Donoviel D, Bernstein A, Lee AS, Ron D, Veselits ML, Sisodia SS and Thinakaran G (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat. Cell Biol. 2: 863–870 (10.1038/35046500) / Nat. Cell Biol. by N Sato (2000)
  102. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D and Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22: 10690–10698 (10.1523/JNEUROSCI.22-24-10690.2002) / J. Neurosci. by EJ Ryu (2002)
  103. Holtz WA and O'Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278: 19367–19377 (10.1074/jbc.M211821200) / J. Biol. Chem. by WA Holtz (2003)
  104. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM and Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5: 1403–1409 (10.1038/70978) / Nat. Med. by GT Liberatore (1999)
  105. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K and Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302–305 (10.1038/77060) / Nat. Genet. by H Shimura (2000)
  106. Imai Y, Soda M and Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275: 35661–35664 (10.1074/jbc.C000447200) / J. Biol. Chem. by Y Imai (2000)
  107. Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J and Cookson MR (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007–1019 (10.1016/S0896-6273(02)01125-X) / Neuron by L Petrucelli (2002)
Dates
Type When
Created 21 years, 8 months ago (Dec. 19, 2003, 4:11 a.m.)
Deposited 1 year, 7 months ago (Jan. 11, 2024, 1:08 p.m.)
Indexed 2 days, 11 hours ago (Sept. 4, 2025, 10:08 a.m.)
Issued 21 years, 8 months ago (Dec. 19, 2003)
Published 21 years, 8 months ago (Dec. 19, 2003)
Published Online 21 years, 8 months ago (Dec. 19, 2003)
Published Print 21 years, 5 months ago (April 1, 2004)
Funders 0

None

@article{Oyadomari_2003, title={Roles of CHOP/GADD153 in endoplasmic reticulum stress}, volume={11}, ISSN={1476-5403}, url={http://dx.doi.org/10.1038/sj.cdd.4401373}, DOI={10.1038/sj.cdd.4401373}, number={4}, journal={Cell Death & Differentiation}, publisher={Springer Science and Business Media LLC}, author={Oyadomari, S and Mori, M}, year={2003}, month=dec, pages={381–389} }