Crossref journal-article
Springer Science and Business Media LLC
Cell Death & Differentiation (297)
Bibliography

Schuler, M., Maurer, U., Goldstein, J. C., Breitenbücher, F., Hoffarth, S., Waterhouse, N. J., & Green, D. R. (2003). p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death & Differentiation, 10(4), 451–460.

Authors 7
  1. M Schuler (first)
  2. U Maurer (additional)
  3. J C Goldstein (additional)
  4. F Breitenbücher (additional)
  5. S Hoffarth (additional)
  6. N J Waterhouse (additional)
  7. D R Green (additional)
References 83 Referenced 88
  1. Vogelstein B, Lane D and Levine AJ (2000) Surfing the p53 network. Nature 408: 307–310 (10.1038/35042675) / Nature by B Vogelstein (2000)
  2. Sherr CJ and DePinho RA (2000) Cellular senescence: mitotic clock or culture shock. Cell 102: 407–410 (10.1016/S0092-8674(00)00046-5) / Cell by CJ Sherr (2000)
  3. Vousden KH (2000) p53: death star. Cell 103: 691–694 (10.1016/S0092-8674(00)00171-9) / Cell by KH Vousden (2000)
  4. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr. CA, Butel JS and Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221 (10.1038/356215a0) / Nature by LA Donehower (1992)
  5. Lowe SW, Ruley HE, Jacks T and Housman DE (1993) p53- dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967 (10.1016/0092-8674(93)90719-7) / Cell by SW Lowe (1993)
  6. Serrano M, Lee H-W, Chin L, Cordon-Cardo C, Beach D and DePinho RA (1996) Role of the INK4a Locus in tumor suppression and cell mortality. Cell 85: 27–37 (10.1016/S0092-8674(00)81079-X) / Cell by M Serrano (1996)
  7. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing HR, Ashmun RA, Grosveld G and Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659 (10.1016/S0092-8674(00)80452-3) / Cell by T Kamijo (1997)
  8. Eischen CM, Weber JD, Roussel MF, Sherr CJ and Cleveland HL (1999) Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13: 2658–2669 (10.1101/gad.13.20.2658) / Genes Dev. by CM Eischen (1999)
  9. Chin L, Tam L, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner II JW, Cordon-Cardo C, Yancopoulos GD and DePinho RA (1999) Essential role for oncogenic Ras in tumor maintenance. Nature 400: 468–472 (10.1038/22788) / Nature by L Chin (1999)
  10. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW (2002) A senescence program controlled by p53 and p16 INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346 (10.1016/S0092-8674(02)00734-1) / Cell by CA Schmitt (2002)
  11. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith Sorensen B, Montesano R and Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22: 3551–3555 / Nucleic Acids Res. by M Hollstein (1994)
  12. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E and Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15: 3032–3040 (10.1128/MCB.15.6.3032) / Mol. Cell. Biol. by LB Owen-Schaub (1995)
  13. Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M and Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188: 2033–2045 (10.1084/jem.188.11.2033) / J. Exp. Med. by M Müller (1998)
  14. Wu GS, Burns TF, McDonald III ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz SD, Wu G and El-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17: 141–143 (10.1038/ng1097-141) / Nat. Genet. by GS Wu (1997)
  15. Miyashita T and Reed HC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299 (10.1016/0092-8674(95)90513-8) / Cell by T Miyashita (1995)
  16. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita R, Tokino T, Taniguchi T and Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058 (10.1126/science.288.5468.1053) / Science by E Oda (2000)
  17. Yu J, Zhang L, Hwang PM, Kinzler KW and Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7: 673–682 (10.1016/S1097-2765(01)00213-1) / Mol. Cell by J Yu (2001)
  18. Nakano K and Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7: 683–694 (10.1016/S1097-2765(01)00214-3) / Mol. Cell by K Nakano (2001)
  19. Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B (1997) A model for p53 induced apoptosis. Nature 389: 300–305 (10.1038/38525) / Nature by K Polyak (1997)
  20. Lin Y, Ma W and Benchimol S (2000) Pidd, a new death-domain containing protein, is induced by p53 and promotes apoptosis. Nat. Genet. 26: 122–127 (10.1038/79102) / Nat. Genet. by Y Lin (2000)
  21. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR and Kley N (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 646–649 (10.1038/377646a0) / Nature by L Buckbinder (1995)
  22. Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW and Jacks T (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14: 704–718 (10.1101/gad.14.6.704) / Genes Dev. by LD Attardi (2000)
  23. Oda K, Arkawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y and Taya Y (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862 (10.1016/S0092-8674(00)00073-8) / Cell by K Oda (2000)
  24. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates and apoptotic protease cascade. Cell 91: 479–489 (10.1016/S0092-8674(00)80434-1) / Cell by P Li (1997)
  25. Du C, Fang M, Li Y, Li L and Wang X (2000) Smac, a mitochondrial protein that promotes Cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42 (10.1016/S0092-8674(00)00008-8) / Cell by C Du (2000)
  26. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly KM, Reid GE, Moritz RL, Simpson RJ and Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53 (10.1016/S0092-8674(00)00009-X) / Cell by AM Verhagen (2000)
  27. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K and Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8: 613–621 (10.1016/S1097-2765(01)00341-0) / Mol. Cell by Y Suzuki (2001)
  28. Hedge R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti I, DuBois G, Lazebnik YA, Zervos AS, Fernandes-Alnemri T and Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J. Biol. Chem. 277: 432–438 (10.1074/jbc.M109721200) / J. Biol. Chem. by R Hedge (2002)
  29. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C and Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277: 439–444 (10.1074/jbc.M109784200) / J. Biol. Chem. by LM Martins (2002)
  30. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ and Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonise inhibitor of apoptosis proteins. J. Biol. Chem. 277: 445–454 (10.1074/jbc.M109891200) / J. Biol. Chem. by AM Verhagen (2002)
  31. Green DR and Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312 (10.1126/science.281.5381.1309) / Science by DR Green (1998)
  32. Luo X, Budihardjo I, Zou H, Slaughter C and Wang X (1998) Bid, a Bcl-2 interacting protein, mediates Cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490 (10.1016/S0092-8674(00)81589-5) / Cell by X Luo (1998)
  33. Li H, Zhou H, Xu C-J and Yuan J (1988) Cleavage BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501 (10.1016/S0092-8674(00)81590-1) / Cell by H Li (1988)
  34. Gross A, Yin X-M, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P and Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for Cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274: 1156–1163 (10.1074/jbc.274.2.1156) / J. Biol. Chem. by A Gross (1999)
  35. Yin X-M, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA and Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400: 886–891 (10.1038/23730) / Nature by X-M Yin (1999)
  36. Hsu Y-T, Wolter KG and Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-xL during apoptosis. Proc. Natl. Acad. Sci. USA 94: 3668–3672 (10.1073/pnas.94.8.3668) / Proc. Natl. Acad. Sci. USA by Y-T Hsu (1997)
  37. Deshager S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B and Martinou J-C (1999) Bid-induced conformational change of Bax is responsible for mitochondrial Cytochrome c release during apoptosis. J. Cell Biol. 144: 891–901 (10.1083/jcb.144.5.891) / J. Cell Biol. by S Deshager (1999)
  38. Nomura M, Shimizu S, Ito T, Narita M, Matsuda H and Tsujimoto Y (1999) Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res. 59: 5542–5548 / Cancer Res. by M Nomura (1999)
  39. Putcha GV, Deshmukh M and Johnson Jr. EM (2000) Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J. Cell Biol. 149: 1011–1017 (10.1083/jcb.149.5.1011) / J. Cell Biol. by GV Putcha (2000)
  40. Perez D and White E (2000) TNF-a signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19 K. Mol. Cell 6: 53–63 (10.1016/S1097-2765(05)00013-4) / Mol. Cell by D Perez (2000)
  41. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S and Huang DCS (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17: 384–395 (10.1093/emboj/17.2.384) / EMBO J. by L O'Connor (1998)
  42. Puthalakath H, Huang DCS, O'Reilly LA, King SM and Strasser A (1999) The proapoptotic activity of the Bcl-2 family member bim is regulated by interaction with the dynein motor complex. Mol. Cell 3: 287–296 (10.1016/S1097-2765(00)80456-6) / Mol. Cell by H Puthalakath (1999)
  43. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P and Green DR (2000) p53 induces apoptosis by caspase activation through mitochondrial Cytochrome c release. J. Biol. Chem. 275: 7337–7342 (10.1074/jbc.275.10.7337) / J. Biol. Chem. by M Schuler (2000)
  44. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X and Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389–399 (10.1016/S0092-8674(00)80849-1) / Cell by K Li (2000)
  45. Yoshida H, Kong Y-Y, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM and Mak TW (1998) Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750 (10.1016/S0092-8674(00)81733-X) / Cell by H Yoshida (1998)
  46. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA and Gruss P (1988) Apaf-1 (CED-4 Homolog) regulates programmed cell death in mammalian development. Cell 94: 727–737 (10.1016/S0092-8674(00)81732-8) / Cell by F Cecconi (1988)
  47. Soengas MS, Alarcón RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW and Lowe SW (1999) Apaf-1 and Caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284: 156–159 (10.1126/science.284.5411.156) / Science by MS Soengas (1999)
  48. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de al Pompa JL, Kagi D, Khoo W, Potter J, Yoshoda R, Kaufman SA, Lowe SW and Mak TW (1998) Differential requirement for Caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352 (10.1016/S0092-8674(00)81477-4) / Cell by R Hakem (1998)
  49. Kuida K, Haydar TF, Kuan C-Y, Gu Y, Taya C, Karasuyama H, Su MSS, Rakic P and Flavell RA (1998) Reduced apoptosis and Cytochrome c-mediated caspase activation in mice lacking Caspase 9. Cell 94: 325–337 (10.1016/S0092-8674(00)81476-2) / Cell by K Kuida (1998)
  50. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ and Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–99 (10.1126/science.270.5233.96) / Science by CM Knudson (1995)
  51. McCurrach ME, Connor TMF, Knudson CM, Korsmeyer SJ and Lowe SW (1997) Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94: 2345–2349 (10.1073/pnas.94.6.2345) / Proc. Natl. Acad. Sci. USA by ME McCurrach (1997)
  52. Sabbatini P, Han J, Chiou SK, Nicholson DW and White E (1997) Interleukin 1b converting enzyme-like proteases are essential for p53-mediated transcriptionally dependent apoptosis. Cell Growth Differ. 8: 643–653 / Cell Growth Differ. by P Sabbatini (1997)
  53. Zhang L, Yu J, Park BH, Kinzler KW and Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992 (10.1126/science.290.5493.989) / Science by L Zhang (2000)
  54. Juin P, Hueber A-O, Littlewood T and Evan G (1999) c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13: 1367–1381 (10.1101/gad.13.11.1367) / Genes Dev. by P Juin (1999)
  55. Jürgensmeier JM, Xie A, Deveraux Q, Ellerby L, Bredesen D and Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 4997–5002 (10.1073/pnas.95.9.4997) / Proc. Natl. Acad. Sci. USA by JM Jürgensmeier (1998)
  56. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG and Green DR (1999) Bax-induced caspase activation and apoptosis via Cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225–2233 (10.1074/jbc.274.4.2225) / J. Biol. Chem. by DM Finucane (1999)
  57. Green DR (1998) Apoptotic pathways: roads to ruin. Cell 94: 695–698 (10.1016/S0092-8674(00)81728-6) / Cell by DR Green (1998)
  58. Nechushtan A, Smith CL, Hsu Y-T and Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 18: 2330–2341 (10.1093/emboj/18.9.2330) / EMBO J. by A Nechushtan (1999)
  59. Eskes R, Desagher S, Antonsson B and Martinou J-C (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20: 929–935 (10.1128/MCB.20.3.929-935.2000) / Mol. Cell. Biol. by R Eskes (2000)
  60. Suzuki M, Youle RJ and Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103: 645–654 (10.1016/S0092-8674(00)00167-7) / Cell by M Suzuki (2000)
  61. Ding H-F, Lin Y-L, McGill G, Juo P, Zhu H, Blenis J, Yuan J and Fisher DE (2000) Essential role for Caspase-8 in transcription-independent apoptosis triggered by p53. J. Biol. Chem. 275: 38905–38911 (10.1074/jbc.M004714200) / J. Biol. Chem. by H-F Ding (2000)
  62. Kovar H, Jug G, Printz D, Bartl S, Schmid G and Werierska-Gadek J (2000) Characterization of distinct consecutive phases in non-genotoxic p53-induced apoptosis of Ewing tumor cells and the rate-limiting role of caspase 8. Oncogene 19: 4096–4107 (10.1038/sj.onc.1203780) / Oncogene by H Kovar (2000)
  63. Feng Gao C, Ren S, Zhang L, Nakajima T, Ichinose S, Hara T, Koike K and Tsuchida N (2001) Caspase-dependent cytosolic release of Cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp. Cell Res. 265: 145–151 (10.1006/excr.2001.5171) / Exp. Cell Res. by C Feng Gao (2001)
  64. Oren M (1999) Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274: 36031–36034 (10.1074/jbc.274.51.36031) / J. Biol. Chem. by M Oren (1999)
  65. Duelli DM and Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat. Cell Biol. 2: 859–862 (10.1038/35041112) / Nat. Cell Biol. by DM Duelli (2000)
  66. Li P-F, Dietz R and von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 18: 6027–6036 (10.1093/emboj/18.21.6027) / EMBO J. by P-F Li (1999)
  67. Goldstein JC, Waterhouse NJ, Juin P, Evan GI and Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2: 156–162 (10.1038/35004029) / Nat. Cell Biol. by JC Goldstein (2000)
  68. Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi XG and Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139: 1281–1292 (10.1083/jcb.139.5.1281) / J. Cell Biol. by KG Wolter (1997)
  69. Relaix F, Wei X, Li W, Pan J, Lin Y, Bowtell DD, Sassoon DA and Wu X (2000) Pw1/Peg3 is a potential cell death mediator and cooperates with Siah 1a in p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 97: 2105–2110 (10.1073/pnas.040378897) / Proc. Natl. Acad. Sci. USA by F Relaix (2000)
  70. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler K and Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825 (10.1016/0092-8674(93)90500-P) / Cell by WS El-Deiry (1993)
  71. Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR and Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6: 1389–1399 (10.1016/S1097-2765(00)00136-2) / Mol. Cell by T Lindsten (2000)
  72. Wei MC, Zong W-X, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730 (10.1126/science.1059108) / Science by MC Wei (2001)
  73. Paddison PJ and Hannon GJ (2002) RNA interference: the new somatic cell genetics. Cancer Cell 2: 17–23 (10.1016/S1535-6108(02)00092-2) / Cancer Cell by PJ Paddison (2002)
  74. Brummelkamp TR, Bernards R and Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553 (10.1126/science.1068999) / Science by TR Brummelkamp (2002)
  75. Brummelkamp TR, Bernards R and Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2: 243–247 (10.1016/S1535-6108(02)00122-8) / Cancer Cell by TR Brummelkamp (2002)
  76. Cheng EHYA, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T and Korsmeyer SJ (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8: 705–711 (10.1016/S1097-2765(01)00320-3) / Mol. Cell by EHYA Cheng (2001)
  77. Deng Y and Wu X (2000) Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. Proc. Natl. Acad. Sci. USA 97: 12050–12055 (10.1073/pnas.97.22.12050) / Proc. Natl. Acad. Sci. USA by Y Deng (2000)
  78. Huang DCS and Strasser A (2001) BH3-only proteins – essential initiators of apoptotic cell death. Cell 103: 839–842 (10.1016/S0092-8674(00)00187-2) / Cell by DCS Huang (2001)
  79. Zong W-X, Lindsten T, Ross AJ, MacGregor GR and Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15: 1481–1486 (10.1101/gad.897601) / Genes Dev. by W-X Zong (2001)
  80. Caelles C, Heimberg A and Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223 (10.1038/370220a0) / Nature by C Caelles (1994)
  81. Haupt Y, Rowan S, Shaulian E, Vousden KH and Oren M (1995) Induction of apoptosis in Hela cells by transactivation-deficient p53. Genes Dev. 9: 2170–2183 (10.1101/gad.9.17.2170) / Genes Dev. by Y Haupt (1995)
  82. Chen X, Ko LJ, Jayaraman L and Prives C (1996) p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10: 2438–2451 (10.1101/gad.10.19.2438) / Genes Dev. by X Chen (1996)
  83. Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602 (10.1016/S0092-8674(00)81902-9) / Cell by M Serrano (1997)
Dates
Type When
Created 22 years, 4 months ago (April 28, 2003, 9:54 a.m.)
Deposited 3 years, 4 months ago (April 18, 2022, 7:03 p.m.)
Indexed 1 month, 1 week ago (July 22, 2025, 7:07 a.m.)
Issued 22 years, 4 months ago (April 1, 2003)
Published 22 years, 4 months ago (April 1, 2003)
Published Online 22 years, 4 months ago (April 28, 2003)
Published Print 22 years, 4 months ago (April 1, 2003)
Funders 0

None

@article{Schuler_2003, title={p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation}, volume={10}, ISSN={1476-5403}, url={http://dx.doi.org/10.1038/sj.cdd.4401180}, DOI={10.1038/sj.cdd.4401180}, number={4}, journal={Cell Death & Differentiation}, publisher={Springer Science and Business Media LLC}, author={Schuler, M and Maurer, U and Goldstein, J C and Breitenbücher, F and Hoffarth, S and Waterhouse, N J and Green, D R}, year={2003}, month=apr, pages={451–460} }