Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Physics (297)
Authors
7
- G. F. Nataf (first)
- M. Guennou (additional)
- J. M. Gregg (additional)
- D. Meier (additional)
- J. Hlinka (additional)
- E. K. H. Salje (additional)
- J. Kreisel (additional)
References
229
Referenced
259
-
Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).
(
10.1103/PhysRevB.2.754
) / Phys. Rev. B by K Aizu (1970) -
Wadhawan, V. Introduction to Ferroic Materials (Gordon and Breach, 2000).
(
10.1201/9781482283051
) -
Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).
(
10.1038/nature06139
) / Nature by BB Van Aken (2007) -
Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994).
(
10.1080/00150199408245120
) / Ferroelectrics by H Schmid (1994) -
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
(
10.1038/natrevmats.2016.46
) / Nat. Rev. Mater. by M Fiebig (2016) -
Gonnissen, J. et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Adv. Funct. Mater. 26, 7599–7604 (2016). On the nanoscale, domain walls in LiNbO3 are not straight but exhibit meanders and kinks, which result in local head-to-head or tail-to-tail sections where bound charges accumulate.
(
10.1002/adfm.201603489
) / Adv. Funct. Mater. by J Gonnissen (2016) -
Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).
(
10.1038/nmat2080
) / Nat. Mater. by C-L Jia (2008) -
Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).
(
10.1126/science.1200605
) / Science by C-L Jia (2011) -
Salje, E. K. H. & Scott, J. F. Ferroelectric Bloch-line switching: a paradigm for memory devices? Appl. Phys. Lett. 105, 252904 (2014).
(
10.1063/1.4905001
) / Appl. Phys. Lett. by EKH Salje (2014) -
Stepkova, V., Marton, P. & Hlinka, J. Ising lines: natural topological defects within ferroelectric Bloch walls. Phys. Rev. B 92, 094106 (2015).
(
10.1103/PhysRevB.92.094106
) / Phys. Rev. B by V Stepkova (2015) -
Seidel, J. (ed.) Topological Structures in Ferroic Materials (Springer, 2016).
(
10.1007/978-3-319-25301-5
) -
Stepkova, V. & Hlinka, J. On the possible internal structure of the ferroelectric Ising lines in BaTiO3. Phase Transit. 90, 11–16 (2017).
(
10.1080/01411594.2016.1206543
) / Phase Transit. by V Stepkova (2017) -
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
(
10.1126/science.1145799
) / Science by SSP Parkin (2008) -
Al Bahri, M. et al. Staggered magnetic nanowire devices for effective domain-wall pinning in racetrack memory. Phys. Rev. Appl. 11, 024023 (2019).
(
10.1103/PhysRevApplied.11.024023
) / Phys. Rev. Appl. by M Al Bahri (2019) -
Harrison, R. J., Redfern, S. A. T., Buckley, A. & Salje, E. K. H. Application of real-time, stroboscopic X-ray diffraction with dynamical mechanical analysis to characterize the motion of ferroelastic domain walls. J. Appl. Phys. 95, 1706–1717 (2004).
(
10.1063/1.1639949
) / J. Appl. Phys. by RJ Harrison (2004) -
Schilling, A. et al. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).
(
10.1103/PhysRevB.74.024115
) / Phys. Rev. B by A Schilling (2006) -
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).
(
10.1038/nnano.2009.451
) / Nat. Nanotechnol. by SY Yang (2010) -
Vul, B. M., Guro, G. M. & Ivanchik, I. I. Encountering domains in ferroelectrics. Ferroelectrics 6, 29–31 (1973).
(
10.1080/00150197308237691
) / Ferroelectrics by BM Vul (1973) -
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
(
10.1103/RevModPhys.84.119
) / Rev. Mod. Phys. by G Catalan (2012) -
Sharma, P., Schoenherr, P. & Seidel, J. Functional ferroic domain walls for nanoelectronics. Materials 12, 2927 (2019).
(
10.3390/ma12182927
) / Materials by P Sharma (2019) -
Seidel, J. Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905–2909 (2012).
(
10.1021/jz3011223
) / J. Phys. Chem. Lett. by J Seidel (2012) -
Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010).
(
10.1002/cphc.200900943
) / ChemPhysChem by EKH Salje (2010) -
Whyte, J. R. & Gregg, J. M. A diode for ferroelectric domain-wall motion. Nat. Commun. 6, 7361 (2015).
(
10.1038/ncomms8361
) / Nat. Commun. by JR Whyte (2015) -
Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).
(
10.1126/sciadv.1700512
) / Sci. Adv. by P Sharma (2017) -
Sharma, P. et al. Conformational domain wall switch. Adv. Funct. Mater. 29, 1807523 (2019).
(
10.1002/adfm.201807523
) / Adv. Funct. Mater. by P Sharma (2019) -
Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–55 (2018).
(
10.1038/nmat5028
) / Nat. Mater. by J Jiang (2018) -
McConville, J. P. V. et al. Ferroelectric domain wall memristor. Adv. Funct. Mater. 30, 2000109 (2020).
(
10.1002/adfm.202000109
) / Adv. Funct. Mater. by JPV McConville (2020) -
Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020).
(
10.1038/s41467-020-16623-9
) / Nat. Commun. by X Chai (2020) -
Bai, Z. L. et al. Hierarchical domain structure and extremely large wall current in epitaxial BiFeO3 thin films. Adv. Funct. Mater. 28, 1801725 (2018).
(
10.1002/adfm.201801725
) / Adv. Funct. Mater. by ZL Bai (2018) -
Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat. Nanotechnol. 12, 655–662 (2017).
(
10.1038/nnano.2017.51
) / Nat. Nanotechnol. by G Sanchez-Santolino (2017) -
Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).
(
10.1038/nmat4878
) / Nat. Mater. by JA Mundy (2017) -
Schaab, J. et al. Electrical half-wave rectification at ferroelectric domain walls. Nat. Nanotechnol. 13, 1028–1034 (2018).
(
10.1038/s41565-018-0253-5
) / Nat. Nanotechnol. by J Schaab (2018) -
Nataf, G. F. et al. Control of surface potential at polar domain walls in a nonpolar oxide. Phys. Rev. Mater. 1, 074410 (2017).
(
10.1103/PhysRevMaterials.1.074410
) / Phys. Rev. Mater. by GF Nataf (2017) -
Frenkel, Y. et al. Imaging and tuning polarity at SrTiO3 domain walls. Nat. Mater. 16, 1203–1208 (2017).
(
10.1038/nmat4966
) / Nat. Mater. by Y Frenkel (2017) -
Bednyakov, P. S., Sturman, B. I., Sluka, T., Tagantsev, A. K. & Yudin, P. V. Physics and applications of charged domain walls. NPJ Comput. Mater. 4, 65 (2018).
(
10.1038/s41524-018-0121-8
) / NPJ Comput. Mater. by PS Bednyakov (2018) -
Seidel, J., Vasudevan, R. K. & Valanoor, N. Topological structures in multiferroics — domain walls, skyrmions and vortices. Adv. Electron. Mater. 2, 1500292 (2016).
(
10.1002/aelm.201500292
) / Adv. Electron. Mater. by J Seidel (2016) -
Seidel, J. Nanoelectronics based on topological structures. Nat. Mater. 18, 188–190 (2019).
(
10.1038/s41563-019-0301-z
) / Nat. Mater. by J Seidel (2019) -
Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).
(
10.1088/0953-8984/27/46/463003
) / J. Phys. Condens. Matter by D Meier (2015) -
Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010).
(
10.1007/978-1-4419-1417-0
) - Zhirnov, V. A. A contribution to the theory of domain walls in ferroelectrics. Sov. Phys. JETP 35, 822–825 (1959). / Sov. Phys. JETP by VA Zhirnov (1959)
-
Lawless, W. N. & Fousek, J. Small-signal permittivity of the stationary (100)-180° domain wall in BaTiO3. J. Phys. Soc. Jpn 28, 419–424 (1970).
(
10.1143/JPSJ.28.419
) / J. Phys. Soc. Jpn by WN Lawless (1970) -
Lajzerowicz, J. & Niez, J. J. Phase transition in a domain wall. J. Phys. Lett. 40, 165–169 (1979).
(
10.1051/jphyslet:01979004007016500
) / J. Phys. Lett. by J Lajzerowicz (1979) -
Houchmandzadeh, B., Lajzerowicz, J. & Salje, E. Order parameter coupling and chirality of domain walls. J. Phys. Condens. Matter 3, 5163–5169 (1991).
(
10.1088/0953-8984/3/27/009
) / J. Phys. Condens. Matter by B Houchmandzadeh (1991) - Bul’bich, A. A. & Gufan, Y. M. Inevitable symmetry lowering in a domain wall near a reordering phase transition. Zh. Eksp. Teor. Fiz. 94, 121 (1988). / Zh. Eksp. Teor. Fiz. by AA Bul’bich (1988)
-
Marton, P., Rychetsky, I. & Hlinka, J. Domain walls of ferroelectric BaTiO3 within the Ginzburg–Landau–Devonshire phenomenological model. Phys. Rev. B 81, 144125 (2010).
(
10.1103/PhysRevB.81.144125
) / Phys. Rev. B by P Marton (2010) -
Hlinka, J. et al. Phase–field modelling of 180° “Bloch walls” in rhombohedral BaTiO3. Phase Transit. 84, 738–746 (2011).
(
10.1080/01411594.2011.558257
) / Phase Transit. by J Hlinka (2011) -
Stepkova, V., Marton, P. & Hlinka, J. Stress-induced phase transition in ferroelectric domain walls of BaTiO3. J. Phys. Condens. Matter 24, 212201 (2012).
(
10.1088/0953-8984/24/21/212201
) / J. Phys. Condens. Matter by V Stepkova (2012) -
Marton, P., Stepkova, V. & Hlinka, J. Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries. Phase Transit. 86, 103–108 (2013).
(
10.1080/01411594.2012.727211
) / Phase Transit. by P Marton (2013) -
Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014).
(
10.1103/PhysRevLett.112.247603
) / Phys. Rev. Lett. by JC Wojdeł (2014) -
Gu, Y. et al. Flexoelectricity and ferroelectric domain wall structures: phase-field modeling and DFT calculations. Phys. Rev. B 89, 174111 (2014).
(
10.1103/PhysRevB.89.174111
) / Phys. Rev. B by Y Gu (2014) -
Morozovska, A. N., Kalinin, S. V. & Eliseev, E. A. in Flexoelectricity in Solids 311–336 (World Scientific, 2016).
(
10.1142/9789814719322_0009
) -
Lee, D. et al. Mixed Bloch–Néel–Ising character of 180° ferroelectric domain walls. Phys. Rev. B 80, 060102 (2009).
(
10.1103/PhysRevB.80.060102
) / Phys. Rev. B by D Lee (2009) -
Taherinejad, M., Vanderbilt, D., Marton, P., Stepkova, V. & Hlinka, J. Bloch-type domain walls in rhombohedral BaTiO3. Phys. Rev. B 86, 155138 (2012).
(
10.1103/PhysRevB.86.155138
) / Phys. Rev. B by M Taherinejad (2012) -
Yudin, P. V., Tagantsev, A. K. & Setter, N. Bistability of ferroelectric domain walls: morphotropic boundary and strain effects. Phys. Rev. B 88, 024102 (2013).
(
10.1103/PhysRevB.88.024102
) / Phys. Rev. B by PV Yudin (2013) -
Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017). Observation of non-Ising components of the domain wall polarization in lithium tantalate by optical second-harmonic generation.
(
10.1038/ncomms15768
) / Nat. Commun. by S Cherifi-Hertel (2017) - Wei, X.-K. et al. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 7, 12385 (2016). / Nat. Commun. by X-K Wei (2016)
-
De Luca, G. et al. Domain wall architecture in tetragonal ferroelectric thin films. Adv. Mater. 29, 1605145 (2017).
(
10.1002/adma.201605145
) / Adv. Mater. by G De Luca (2017) -
Janovec, V. A symmetry approach to domain structures. Ferroelectrics 12, 43–53 (1976).
(
10.1080/00150197608241392
) / Ferroelectrics by V Janovec (1976) -
Janovec, V. Symmetry and structure of domain walls. Ferroelectrics 35, 105–110 (1981).
(
10.1080/00150198108017671
) / Ferroelectrics by V Janovec (1981) -
Janovec, V. & Přívratská, J. in International Tables for Crystallography 449–505 (International Union of Crystallography, 2006).
(
10.1107/97809553602060000645
) -
Janovec, V. & Kopský, V. Layer groups, scanning tables and the structure of domain walls. Ferroelectrics 191, 23–28 (1997).
(
10.1080/00150199708015618
) / Ferroelectrics by V Janovec (1997) -
Janovec, V., Schranz, W., Warhanek, H. & Zikmund, Z. Symmetry analysis of domain structure in KSCN crystals. Ferroelectrics 98, 171–189 (1989).
(
10.1080/00150198908217581
) / Ferroelectrics by V Janovec (1989) -
Kopský, V. The scanning for layer groups and positional dependence of domain wall energy and structure. Ferroelectrics 376, 168–175 (2008).
(
10.1080/00150190802441052
) / Ferroelectrics by V Kopský (2008) -
Janovec, V., Grocký, M., Kopský, V. & Kluiber, Z. On atomic displacements in 90° ferroelectric domain walls of tetragonal BaTiO3 crystals. Ferroelectrics 303, 65–68 (2004).
(
10.1080/00150190490456592
) / Ferroelectrics by V Janovec (2004) -
Janovec, V. & Litvin, D. B. Symmetry-allowed atomic displacements in a ferroelastic domain wall of rhombohedral BaTiO3. Phase Transit. 84, 760–768 (2011).
(
10.1080/01411594.2011.558269
) / Phase Transit. by V Janovec (2011) -
Přívratská, J. & Janovec, V. Examination of point group symmetries of non-ferroelastic domain walls. Ferroelectrics 191, 17–21 (1997).
(
10.1080/00150199708015617
) / Ferroelectrics by J Přívratská (1997) -
Přívratská, J., Janovec, V. & Machonský, L. Tensor properties discriminating domain walls from non-ferroelastic domains. Ferroelectrics 240, 1349–1358 (2000).
(
10.1080/00150190008227956
) / Ferroelectrics by J Přívratská (2000) -
Tolédano, P., Guennou, M. & Kreisel, J. Order-parameter symmetries of domain walls in ferroelectrics and ferroelastics. Phys. Rev. B 89, 134104 (2014).
(
10.1103/PhysRevB.89.134104
) / Phys. Rev. B by P Tolédano (2014) -
Schranz, W., Rychetsky, I. & Hlinka, J. Polarity of domain boundaries in nonpolar materials derived from order parameter and layer group symmetry. Phys. Rev. B 100, 184105 (2019).
(
10.1103/PhysRevB.100.184105
) / Phys. Rev. B by W Schranz (2019) -
Janovec, V., Richterová, L. & Přívratská, J. Polar properties of compatible ferroelastic domain walls. Ferroelectrics 222, 73–76 (1999). This approach yields the remarkable result that all strain-compatible ferroelastic domain walls are non-centrosymmetric and predict possible directions for the polar axis.
(
10.1080/00150199908014800
) / Ferroelectrics by V Janovec (1999) -
Yokota, H. et al. Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope. Phys. Rev. B 89, 144109 (2014).
(
10.1103/PhysRevB.89.144109
) / Phys. Rev. B by H Yokota (2014) -
Yokota, H., Matsumoto, S., Salje, E. K. H. & Uesu, Y. Symmetry and three-dimensional anisotropy of polar domain boundaries observed in ferroelastic LaAlO3 in the complete absence of ferroelectric instability. Phys. Rev. B 98, 104105 (2018).
(
10.1103/PhysRevB.98.104105
) / Phys. Rev. B by H Yokota (2018) -
Yokota, H., Matsumoto, S., Salje, E. K. H. & Uesu, Y. Polar nature of domain boundaries in purely ferroelastic Pb3(PO4)2 investigated by second harmonic generation microscopy. Phys. Rev. B 100, 024101 (2019).
(
10.1103/PhysRevB.100.024101
) / Phys. Rev. B by H Yokota (2019) -
Yokota, H., Matsumoto, S., Hasegawa, N., Salje, E. & Uesu, Y. Enhancement of polar nature of domain boundaries in ferroelastic Pb3(PO4)2 by doping divalent-metal ions. J. Phys. Condens. Matter 32, 345401 (2020).
(
10.1088/1361-648X/ab8b9b
) / J. Phys. Condens. Matter by H Yokota (2020) -
Yokota, H., Hasegawa, N., Glazer, M., Salje, E. K. H. & Uesu, Y. Direct evidence of polar ferroelastic domain boundaries in semiconductor BiVO4. Appl. Phys. Lett. 116, 232901 (2020).
(
10.1063/5.0010414
) / Appl. Phys. Lett. by H Yokota (2020) -
Salje, E. K. H., Li, S., Stengel, M., Gumbsch, P. & Ding, X. Flexoelectricity and the polarity of complex ferroelastic twin patterns. Phys. Rev. B 94, 024114 (2016).
(
10.1103/PhysRevB.94.024114
) / Phys. Rev. B by EKH Salje (2016) -
Goncalves-Ferreira, L., Redfern, S. A. T., Artacho, E. & Salje, E. K. H. Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101, 097602 (2008).
(
10.1103/PhysRevLett.101.097602
) / Phys. Rev. Lett. by L Goncalves-Ferreira (2008) -
Conti, S., Müller, S., Poliakovsky, A. & Salje, E. K. H. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials. J. Phys. Condens. Matter 23, 142203 (2011). An additional symmetry lowering at the wall can lead to a potentially switchable polarity.
(
10.1088/0953-8984/23/14/142203
) / J. Phys. Condens. Matter by S Conti (2011) -
Pöttker, H. & Salje, E. K. H. Flexoelectricity, incommensurate phases and the Lifshitz point. J. Phys. Condens. Matter 28, 075902 (2016).
(
10.1088/0953-8984/28/7/075902
) / J. Phys. Condens. Matter by H Pöttker (2016) -
Pöttker, H. & Salje, E. K. H. Twin boundary profiles with linear–quadratic coupling between order parameters. J. Phys. Condens. Matter 26, 342201 (2014).
(
10.1088/0953-8984/26/34/342201
) / J. Phys. Condens. Matter by H Pöttker (2014) -
Van Aert, S. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523–527 (2012).
(
10.1002/adma.201103717
) / Adv. Mater. by S Van Aert (2012) -
Salje, E. K. H., Aktas, O., Carpenter, M. A., Laguta, V. V. & Scott, J. F. Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3. Phys. Rev. Lett. 111, 247603 (2013).
(
10.1103/PhysRevLett.111.247603
) / Phys. Rev. Lett. by EKH Salje (2013) -
Zhao, Z. et al. Interaction of low-energy electrons with surface polarity near ferroelastic domain boundaries. Phys. Rev. Mater. 3, 043601 (2019).
(
10.1103/PhysRevMaterials.3.043601
) / Phys. Rev. Mater. by Z Zhao (2019) -
Casals, B. et al. Low-temperature dielectric anisotropy driven by an antiferroelectric mode in SrTiO3. Phys. Rev. Lett. 120, 217601 (2018).
(
10.1103/PhysRevLett.120.217601
) / Phys. Rev. Lett. by B Casals (2018) -
Pesquera, D., Carpenter, M. A. & Salje, E. K. H. Glasslike dynamics of polar domain walls in cryogenic SrTiO3. Phys. Rev. Lett. 121, 235701 (2018).
(
10.1103/PhysRevLett.121.235701
) / Phys. Rev. Lett. by D Pesquera (2018) -
Novak, J. & Salje, E. K. H. Surface structure of domain walls. J. Phys. Condens. Matter 10, L359–L366 (1998).
(
10.1088/0953-8984/10/21/005
) / J. Phys. Condens. Matter by J Novak (1998) -
Nataf, G. F. et al. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate. Sci. Rep. 6, 33098 (2016).
(
10.1038/srep33098
) / Sci. Rep. by GF Nataf (2016) -
Barrett, N. et al. Full field electron spectromicroscopy applied to ferroelectric materials. J. Appl. Phys. 113, 187217 (2013).
(
10.1063/1.4801968
) / J. Appl. Phys. by N Barrett (2013) -
Lu, G., Li, S., Ding, X. & Salje, E. K. H. Piezoelectricity and electrostriction in ferroelastic materials with polar twin boundaries and domain junctions. Appl. Phys. Lett. 114, 202901 (2019).
(
10.1063/1.5092523
) / Appl. Phys. Lett. by G Lu (2019) - Lu, G., Li, S., Ding, X., Sun, J. & Salje, E. K. H. Ferroelectric switching in ferroelastic materials with rough surfaces. Sci. Rep. 9, 15834 (2019). / Sci. Rep. by G Lu (2019)
-
Schmid, H. & Pétermann, L. A. Dielectric constant and electric resistivity of copper chlorine boracite, Cu3B7O13Cl (Cu-Cl-B). Phys. Status Solidi 41, K147–K150 (1977).
(
10.1002/pssa.2210410255
) / Phys. Status Solidi by H Schmid (1977) -
Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of WO3−x. J. Phys. Condens. Matter 10, L377–L380 (1998).
(
10.1088/0953-8984/10/22/003
) / J. Phys. Condens. Matter by A Aird (1998) -
Kim, Y., Alexe, M. & Salje, E. K. H. Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x. Appl. Phys. Lett. 96, 032904 (2010).
(
10.1063/1.3292587
) / Appl. Phys. Lett. by Y Kim (2010) -
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
(
10.1038/nmat2373
) / Nat. Mater. by J Seidel (2009) -
Farokhipoor, S. & Noheda, B. Local conductivity and the role of vacancies around twin walls of (001)−BiFeO3 thin films. J. Appl. Phys. 112, 052003 (2012).
(
10.1063/1.4746073
) / J. Appl. Phys. by S Farokhipoor (2012) -
Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).
(
10.1103/PhysRevLett.107.127601
) / Phys. Rev. Lett. by S Farokhipoor (2011) -
Chiu, Y.-P. et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530–1534 (2011).
(
10.1002/adma.201004143
) / Adv. Mater. by Y-P Chiu (2011) -
Lubk, A., Gemming, S. & Spaldin, N. A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009).
(
10.1103/PhysRevB.80.104110
) / Phys. Rev. B by A Lubk (2009) -
Diéguez, O., Aguado-Puente, P., Junquera, J. & Íñiguez, J. Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013).
(
10.1103/PhysRevB.87.024102
) / Phys. Rev. B by O Diéguez (2013) -
Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105, 197603 (2010).
(
10.1103/PhysRevLett.105.197603
) / Phys. Rev. Lett. by J Seidel (2010) -
Campanini, M. et al. Imaging and quantification of charged domain walls in BiFeO3. Nanoscale 12, 9186–9193 (2020).
(
10.1039/D0NR01258K
) / Nanoscale by M Campanini (2020) -
Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).
(
10.1021/nl104363x
) / Nano Lett. by P Maksymovych (2011) -
Li, L. et al. Atomic scale structure changes induced by charged domain walls in ferroelectric materials. Nano Lett. 13, 5218–5223 (2013).
(
10.1021/nl402651r
) / Nano Lett. by L Li (2013) -
Vasudevan, R. K. et al. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524–5531 (2012).
(
10.1021/nl302382k
) / Nano Lett. by RK Vasudevan (2012) -
Körbel, S., Hlinka, J. & Sanvito, S. Electron trapping by neutral pristine ferroelectric domain walls in BiFeO3. Phys. Rev. B 98, 100104 (2018).
(
10.1103/PhysRevB.98.100104
) / Phys. Rev. B by S Körbel (2018) -
Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).
(
10.1038/nmat4799
) / Nat. Mater. by T Rojac (2017) -
Lee, J. H. et al. Spintronic functionality of BiFeO3 domain walls. Adv. Mater. 26, 7078–7082 (2014).
(
10.1002/adma.201402558
) / Adv. Mater. by JH Lee (2014) -
Stolichnov, I. et al. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014). When conducting domain walls are moved by applied electric fields, enhanced conduction persists where the domain walls were before the field-induced movement.
(
10.1063/1.4869851
) / Appl. Phys. Lett. by I Stolichnov (2014) -
Domingo, N., Farokhipoor, S., Santiso, J., Noheda, B. & Catalan, G. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 29, 334003 (2017).
(
10.1088/1361-648X/aa7a24
) / J. Phys. Condens. Matter by N Domingo (2017) -
He, Q. et al. Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012).
(
10.1103/PhysRevLett.108.067203
) / Phys. Rev. Lett. by Q He (2012) -
Yang, J. C. et al. Conduction control at ferroic domain walls via external stimuli. Nanoscale 6, 10524–10529 (2014).
(
10.1039/C4NR03300K
) / Nanoscale by JC Yang (2014) -
Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).
(
10.1038/nmat2632
) / Nat. Mater. by T Choi (2010) -
Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).
(
10.1038/nmat3249
) / Nat. Mater. by D Meier (2012) -
Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).
(
10.1103/PhysRevLett.108.077203
) / Phys. Rev. Lett. by W Wu (2012) -
Holtz, M. E. et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017).
(
10.1021/acs.nanolett.7b01288
) / Nano Lett. by ME Holtz (2017) -
Småbråten, D. R. et al. Charged domain walls in improper ferroelectric hexagonal manganites and gallates. Phys. Rev. Mater. 2, 114405 (2018).
(
10.1103/PhysRevMaterials.2.114405
) / Phys. Rev. Mater. by DR Småbråten (2018) -
Schoenherr, P. et al. Observation of uncompensated bound charges at improper ferroelectric domain walls. Nano Lett. 19, 1659–1664 (2019).
(
10.1021/acs.nanolett.8b04608
) / Nano Lett. by P Schoenherr (2019) -
Turner, P. W. et al. Large carrier mobilities in ErMnO3 conducting domain walls revealed by quantitative Hall-effect measurements. Nano Lett. 18, 6381–6386 (2018). The carrier mobilities at domain walls are among the highest reported in oxide systems.
(
10.1021/acs.nanolett.8b02742
) / Nano Lett. by PW Turner (2018) -
Mosberg, A. B. et al. FIB lift-out of conducting ferroelectric domain walls in hexagonal manganites. Appl. Phys. Lett. 115, 122901 (2019).
(
10.1063/1.5115465
) / Appl. Phys. Lett. by AB Mosberg (2019) -
Kumagai, Y. & Spaldin, N. A. Structural domain walls in polar hexagonal manganites. Nat. Commun. 4, 1540 (2013).
(
10.1038/ncomms2545
) / Nat. Commun. by Y Kumagai (2013) -
Du, Y. et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl. Phys. Lett. 99, 252107 (2011).
(
10.1063/1.3671393
) / Appl. Phys. Lett. by Y Du (2011) - Wu, X. et al. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Sci. Adv. 3, e1602371 (2017). / Sci. Adv. by X Wu (2017)
-
Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).
(
10.1038/ncomms2839
) / Nat. Commun. by T Sluka (2013) -
Gureev, M. Y., Tagantsev, A. K. & Setter, N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B 83, 184104 (2011).
(
10.1103/PhysRevB.83.184104
) / Phys. Rev. B by MY Gureev (2011) -
Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012).
(
10.1038/ncomms1751
) / Nat. Commun. by T Sluka (2012) -
Bednyakov, P. S., Sluka, T., Tagantsev, A. K., Damjanovic, D. & Setter, N. Formation of charged ferroelectric domain walls with controlled periodicity. Sci. Rep. 5, 15819 (2015).
(
10.1038/srep15819
) / Sci. Rep. by PS Bednyakov (2015) -
Aristov, V. V., Kokhanchik, L. S. & Voronovskii, Y. I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Phys. Status Solidi 86, 133–141 (1984).
(
10.1002/pssa.2210860113
) / Phys. Status Solidi by VV Aristov (1984) -
Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).
(
10.1002/adfm.201201174
) / Adv. Funct. Mater. by M Schröder (2012) -
Kämpfe, T. et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B 89, 035314 (2014).
(
10.1103/PhysRevB.89.035314
) / Phys. Rev. B by T Kämpfe (2014) -
Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539 (2010).
(
10.1364/OE.18.016539
) / Opt. Express by Y Sheng (2010) -
Pryakhina, V. I. et al. As-grown domain structure in lithium tantalate with spatially nonuniform composition. Ferroelectrics 525, 47–53 (2018).
(
10.1080/00150193.2018.1432926
) / Ferroelectrics by VI Pryakhina (2018) -
Greshnyakov, E. D., Lisjikh, B. I., Pryakhina, V. I., Nebogatikov, M. S. & Shur, V. Y. Charged domain walls in lithium tantalate with compositional gradients produced by partial VTE process. IOP Conf. Ser. Mater. Sci. Eng. 699, 012015 (2019).
(
10.1088/1757-899X/699/1/012015
) / IOP Conf. Ser. Mater. Sci. Eng. by ED Greshnyakov (2019) -
Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011). Inclined domain walls lead to partial head-to-head configurations with an accumulation of free electronic carriers, leading to an intrinsic rise in conductivity.
(
10.1103/PhysRevB.83.235313
) / Phys. Rev. B by EA Eliseev (2011) -
Lu, H. et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv. Mater. 31, 1902890 (2019).
(
10.1002/adma.201902890
) / Adv. Mater. by H Lu (2019) -
Godau, C., Kämpfe, T., Thiessen, A., Eng, L. M. & Haußmann, A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano 11, 4816–4824 (2017).
(
10.1021/acsnano.7b01199
) / ACS Nano by C Godau (2017) -
Schröder, M. et al. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Mater. Res. Express 1, 035012 (2014).
(
10.1088/2053-1591/1/3/035012
) / Mater. Res. Express by M Schröder (2014) - Werner, C. S. et al. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 9862 (2017). / Sci. Rep. by CS Werner (2017)
-
Nataf, G. F., Guennou, M., Haußmann, A., Barrett, N. & Kreisel, J. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3. Phys. Status Solidi Rapid Res. Lett. 10, 222–226 (2016).
(
10.1002/pssr.201510303
) / Phys. Status Solidi Rapid Res. Lett. by GF Nataf (2016) -
Nataf, G. F., Aktas, O., Granzow, T. & Salje, E. K. H. Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO3. J. Phys. Condens. Matter 28, 015901 (2016).
(
10.1088/0953-8984/28/1/015901
) / J. Phys. Condens. Matter by GF Nataf (2016) -
Wu, X. & Vanderbilt, D. Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180° domain walls. Phys. Rev. B 73, 020103 (2006).
(
10.1103/PhysRevB.73.020103
) / Phys. Rev. B by X Wu (2006) -
Rahmanizadeh, K., Wortmann, D., Bihlmayer, G. & Blügel, S. Charge and orbital order at head-to-head domain walls in PbTiO3. Phys. Rev. B 90, 115104 (2014).
(
10.1103/PhysRevB.90.115104
) / Phys. Rev. B by K Rahmanizadeh (2014) -
Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).
(
10.1002/adma.201102254
) / Adv. Mater. by J Guyonnet (2011) -
Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Maksymovych, P. & Kalinin, S. V. Domain wall conduction in multiaxial ferroelectrics. Phys. Rev. B 85, 045312 (2012).
(
10.1103/PhysRevB.85.045312
) / Phys. Rev. B by EA Eliseev (2012) -
Sifuna, J., García-Fernández, P., Manyali, G. S., Amolo, G. & Junquera, J. First-principles study of two-dimensional electron and hole gases at the head-to-head and tail-to-tail 180° domain walls in PbTiO3 ferroelectric thin films. Phys. Rev. B 101, 174114 (2020).
(
10.1103/PhysRevB.101.174114
) / Phys. Rev. B by J Sifuna (2020) -
Gaponenko, I., Tückmantel, P., Karthik, J., Martin, L. W. & Paruch, P. Towards reversible control of domain wall conduction in Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 106, 162902 (2015).
(
10.1063/1.4918762
) / Appl. Phys. Lett. by I Gaponenko (2015) -
Tselev, A. et al. Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nat. Commun. 7, 11630 (2016).
(
10.1038/ncomms11630
) / Nat. Commun. by A Tselev (2016) -
Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).
(
10.1021/nl203349b
) / Nano Lett. by P Maksymovych (2012) -
Stolichnov, I. et al. Bent ferroelectric domain walls as reconfigurable metallic-like channels. Nano Lett. 15, 8049–8055 (2015).
(
10.1021/acs.nanolett.5b03450
) / Nano Lett. by I Stolichnov (2015) -
Wei, X.-K. et al. Controlled charging of ferroelastic domain walls in oxide ferroelectrics. ACS Appl. Mater. Interfaces 9, 6539–6546 (2017).
(
10.1021/acsami.6b13821
) / ACS Appl. Mater. Interfaces by X-K Wei (2017) -
Seidel, J. et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).
(
10.1103/PhysRevLett.107.126805
) / Phys. Rev. Lett. by J Seidel (2011) -
Seidel, J., Yang, S. Y., Alarcón-Lladó, E., Ager, J. W. & Ramesh, R. Nanoscale probing of high photovoltages at 109° domain walls. Ferroelectrics 433, 123–126 (2012).
(
10.1080/00150193.2012.678156
) / Ferroelectrics by J Seidel (2012) -
Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).
(
10.1038/ncomms3835
) / Nat. Commun. by A Bhatnagar (2013) - Yang, M.-M., Bhatnagar, A., Luo, Z.-D. & Alexe, M. Enhancement of local photovoltaic current at ferroelectric domain walls in BiFeO3. Sci. Rep. 7, 43070 (2017). / Sci. Rep. by M-M Yang (2017)
-
Nataf, G. F. & Guennou, M. Optical studies of ferroelectric and ferroelastic domain walls. J. Phys. Condens. Matter 32, 183001 (2020).
(
10.1088/1361-648X/ab68f3
) / J. Phys. Condens. Matter by GF Nataf (2020) -
Balcells, L. et al. Enhanced conduction and ferromagnetic order at (100)-type twin walls in La0.7Sr0.3MnO3 thin films. Phys. Rev. B 92, 075111 (2015).
(
10.1103/PhysRevB.92.075111
) / Phys. Rev. B by L Balcells (2015) -
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
(
10.1038/s41586-018-0855-y
) / Nature by AK Yadav (2019) -
Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).
(
10.1038/nature17659
) / Nature by P Zubko (2016) -
Islam Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).
(
10.1063/1.3634072
) / Appl. Phys. Lett. by A Islam Khan (2011) -
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
(
10.1021/nl071804g
) / Nano Lett. by S Salahuddin (2008) - Stefani, C. et al. Ferroelectric 180 degree walls are mechanically softer than the domains they separate. Preprint at https://arxiv.org/abs/2005.04249 (2020).
-
Royo, M., Escorihuela-Sayalero, C., Íñiguez, J. & Rurali, R. Ferroelectric domain wall phonon polarizer. Phys. Rev. Mater. 1, 051402 (2017). Domain walls can act as phonon polarizers and filter phonons depending on their polarization.
(
10.1103/PhysRevMaterials.1.051402
) / Phys. Rev. Mater. by M Royo (2017) -
Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).
(
10.1038/nature13918
) / Nature by S Farokhipoor (2014) -
Bibes, M. & Barthelemy, A. Oxide spintronics. IEEE Trans. Electron Devices 54, 1003–1023 (2007).
(
10.1109/TED.2007.894366
) / IEEE Trans. Electron Devices by M Bibes (2007) -
Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D Appl. Phys. 43, 264001 (2010).
(
10.1088/0022-3727/43/26/264001
) / J. Phys. D Appl. Phys. by VV Kruglyak (2010) -
Becher, C. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 10, 661–665 (2015).
(
10.1038/nnano.2015.108
) / Nat. Nanotechnol. by C Becher (2015) -
Becher, C. et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).
(
10.1038/ncomms5295
) / Nat. Commun. by C Becher (2014) -
Vopson, M. M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015).
(
10.1080/10408436.2014.992584
) / Crit. Rev. Solid State Mater. Sci. by MM Vopson (2015) -
Meisenheimer, P. B., Novakov, S., Vu, N. M. & Heron, J. T. Perspective: Magnetoelectric switching in thin film multiferroic heterostructures. J. Appl. Phys. 123, 240901 (2018).
(
10.1063/1.5031446
) / J. Appl. Phys. by PB Meisenheimer (2018) -
Huang, B.-C. et al. Atomically resolved electronic states and correlated magnetic order at termination engineered complex oxide heterointerfaces. ACS Nano 12, 1089–1095 (2018).
(
10.1021/acsnano.7b06004
) / ACS Nano by B-C Huang (2018) -
Li, T. X. et al. Effect of misfit strain on multiferroic and magnetoelectric properties of epitaxial La0.7Sr0.3MnO3/BaTiO3 bilayer. J. Phys. D Appl. Phys. 45, 085002 (2012).
(
10.1088/0022-3727/45/8/085002
) / J. Phys. D Appl. Phys. by TX Li (2012) - Hausmann, S. et al. Atomic-scale engineering of ferroelectric–ferromagnetic interfaces of epitaxial perovskite films for functional properties. Sci. Rep. 7, 10734 (2017). / Sci. Rep. by S Hausmann (2017)
- Guo, H. et al. Interface-induced multiferroism by design in complex oxide superlattices. Proc. Natl Acad. Sci. USA 114, E5062–E5069 (2017). / Proc. Natl Acad. Sci. USA by H Guo (2017)
-
Pesquera, D. et al. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films. Nat. Commun. 3, 1189 (2012).
(
10.1038/ncomms2189
) / Nat. Commun. by D Pesquera (2012) -
Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).
(
10.1038/nmat2958
) / Nat. Mater. by E Benckiser (2011) -
Everhardt, A. S., Matzen, S., Domingo, N., Catalan, G. & Noheda, B. Ferroelectric domain structures in low-strain BaTiO3. Adv. Electron. Mater. 2, 1500214 (2016).
(
10.1002/aelm.201500214
) / Adv. Electron. Mater. by AS Everhardt (2016) -
Everhardt, A. S. et al. Temperature-independent giant dielectric response in transitional BaTiO3 thin films. Appl. Phys. Rev. 7, 011402 (2020). The denomination ‘transitional’ comes from the observation of a gradual change of structure from tetragonal symmetry at the top of a thick film to orthorhombic symmetry at the bottom.
(
10.1063/1.5122954
) / Appl. Phys. Rev. by AS Everhardt (2020) -
Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).
(
10.1126/science.aay7221
) / Science by G Dong (2019) -
Nahas, Y. et al. Inverse transition of labyrinthine domain patterns in ferroelectric thin films. Nature 577, 47–51 (2020).
(
10.1038/s41586-019-1845-4
) / Nature by Y Nahas (2020) -
Schupper, N. & Shnerb, N. M. Inverse melting and inverse freezing: a spin model. Phys. Rev. E 72, 046107 (2005).
(
10.1103/PhysRevE.72.046107
) / Phys. Rev. E by N Schupper (2005) -
Nadupalli, S., Kreisel, J. & Granzow, T. Increasing bulk photovoltaic current by strain tuning. Sci. Adv. 5, eaau9199 (2019).
(
10.1126/sciadv.aau9199
) / Sci. Adv. by S Nadupalli (2019) -
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
(
10.1038/s41586-019-1496-5
) / Nature by D Li (2019) -
Catalano, S. et al. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018).
(
10.1088/1361-6633/aaa37a
) / Rep. Prog. Phys. by S Catalano (2018) -
Simons, H. et al. Long-range symmetry breaking in embedded ferroelectrics. Nat. Mater. 17, 814–819 (2018).
(
10.1038/s41563-018-0116-3
) / Nat. Mater. by H Simons (2018) -
Xu, X. et al. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 19, 887–893 (2020).
(
10.1038/s41563-020-0656-1
) / Nat. Mater. by X Xu (2020) -
Mandel, S. Research suggests a new class of ferroelectric materials. Scilight 2020, 041101 (2020).
(
10.1063/10.0000632
) / Scilight by S Mandel (2020) -
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
(
10.1103/RevModPhys.51.591
) / Rev. Mod. Phys. by ND Mermin (1979) -
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
(
10.1038/nature16463
) / Nature by AK Yadav (2016) -
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
(
10.1038/s41586-019-1092-8
) / Nature by S Das (2019) -
Erb, K. C. & Hlinka, J. Vector, bidirector and Bloch skyrmion phases induced by structural crystallographic symmetry breaking. Phys. Rev. B 102, 024110 (2020).
(
10.1103/PhysRevB.102.024110
) / Phys. Rev. B by KC Erb (2020) -
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
(
10.1126/science.1166767
) / Science by S Mühlbauer (2009) -
Zhao, Z., Ding, X. & Salje, E. K. H. Flicker vortex structures in multiferroic materials. Appl. Phys. Lett. 105, 112906 (2014).
(
10.1063/1.4896143
) / Appl. Phys. Lett. by Z Zhao (2014) -
Salje, E. K. H., Li, S., Zhao, Z., Gumbsch, P. & Ding, X. Polar twin boundaries and nonconventional ferroelectric switching. Appl. Phys. Lett. 106, 212907 (2015).
(
10.1063/1.4922036
) / Appl. Phys. Lett. by EKH Salje (2015) -
Zykova-Timan, T. & Salje, E. K. H. Highly mobile vortex structures inside polar twin boundaries in SrTiO3. Appl. Phys. Lett. 104, 082907 (2014).
(
10.1063/1.4866859
) / Appl. Phys. Lett. by T Zykova-Timan (2014) -
Salje, E. K. H. & Ishibashi, Y. Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys. Condens. Matter 8, 8477–8495 (1996).
(
10.1088/0953-8984/8/44/004
) / J. Phys. Condens. Matter by EKH Salje (1996) -
Pertsev, N. A., Novak, J. & Salje, E. K. H. Long-range elastic interactions and equilibrium shapes of curved ferroelastic domain walls in crystals. Phil. Mag. A 80, 2201–2213 (2000).
(
10.1080/01418610008212157
) / Phil. Mag. A by NA Pertsev (2000) -
Juraschek, D. M. et al. Dynamical magnetic field accompanying the motion of ferroelectric domain walls. Phys. Rev. Lett. 123, 127601 (2019).
(
10.1103/PhysRevLett.123.127601
) / Phys. Rev. Lett. by DM Juraschek (2019) -
Christensen, D. V. et al. Strain-tunable magnetism at oxide domain walls. Nat. Phys. 15, 269–274 (2019).
(
10.1038/s41567-018-0363-x
) / Nat. Phys. by DV Christensen (2019) -
Guo, E.-J., Roth, R., Herklotz, A., Hesse, D. & Dörr, K. Ferroelectric 180° domain wall motion controlled by biaxial strain. Adv. Mater. 27, 1615–1618 (2015).
(
10.1002/adma.201405205
) / Adv. Mater. by E-J Guo (2015) -
McGilly, L. J., Sandu, C. S., Feigl, L., Damjanovic, D. & Setter, N. Nanoscale defect engineering and the resulting effects on domain wall dynamics in ferroelectric thin films. Adv. Funct. Mater. 27, 1605196 (2017).
(
10.1002/adfm.201605196
) / Adv. Funct. Mater. by LJ McGilly (2017) -
Xu, R. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79–86 (2015).
(
10.1038/nmat4119
) / Nat. Mater. by R Xu (2015) -
Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).
(
10.1038/nature18286
) / Nature by S Liu (2016) -
Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506–510 (1971).
(
10.1143/JPSJ.31.506
) / J. Phys. Soc. Jpn. by Y Ishibashi (1971) -
Ishibashi, Y. & Orihara, H. A theory of D–E hysteresis loop. Integr. Ferroelectr. 9, 57–61 (1995).
(
10.1080/10584589508012906
) / Integr. Ferroelectr. by Y Ishibashi (1995) -
Dimmler, K. et al. Switching kinetics in KNO3 ferroelectric thin-film memories. J. Appl. Phys. 61, 5467–5470 (1987).
(
10.1063/1.338237
) / J. Appl. Phys. by K Dimmler (1987) -
Eliseev, E. A. et al. Screening and retardation effects on 180°-domain wall motion in ferroelectrics: wall velocity and nonlinear dynamics due to polarization-screening charge interactions. Phys. Rev. B 78, 245409 (2008).
(
10.1103/PhysRevB.78.245409
) / Phys. Rev. B by EA Eliseev (2008) -
Shur, V. Y., Akhmatkhanov, A. R. & Baturin, I. S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev. 2, 040604 (2015).
(
10.1063/1.4928591
) / Appl. Phys. Rev. by VY Shur (2015) -
Shur, V. Y. Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3. J. Mater. Sci. 41, 199–210 (2006).
(
10.1007/s10853-005-6065-7
) / J. Mater. Sci. by VY Shur (2006) -
Bdikin, I. K. et al. Domain dynamics in piezoresponse force spectroscopy: quantitative deconvolution and hysteresis loop fine structure. Appl. Phys. Lett. 92, 182909 (2008).
(
10.1063/1.2919792
) / Appl. Phys. Lett. by IK Bdikin (2008) -
Rodriguez, B. J. et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl. Phys. Lett. 86, 012906 (2005).
(
10.1063/1.1845594
) / Appl. Phys. Lett. by BJ Rodriguez (2005) -
Gruverman, A., Alexe, M. & Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 10, 1661 (2019).
(
10.1038/s41467-019-09650-8
) / Nat. Commun. by A Gruverman (2019) -
Vasudevan, R. K. et al. Domain wall conduction and polarization-mediated transport in ferroelectrics. Adv. Funct. Mater. 23, 2592–2616 (2013).
(
10.1002/adfm.201300085
) / Adv. Funct. Mater. by RK Vasudevan (2013) -
Meier, D., Seidel, J., Gregg, M. & Ramesh, R. Domain Walls: From Fundamental Properties to Nanotechnology Concepts (Oxford Univ. Press, 2020).
(
10.1093/oso/9780198862499.001.0001
) -
Salje, E. K. H., Xue, D., Ding, X., Dahmen, K. A. & Scott, J. F. Ferroelectric switching and scale invariant avalanches in BaTiO3. Phys. Rev. Mater. 3, 014415 (2019).
(
10.1103/PhysRevMaterials.3.014415
) / Phys. Rev. Mater. by EKH Salje (2019) -
Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242–250 (2001).
(
10.1038/35065675
) / Nature by JP Sethna (2001) -
Salje, E. K. H. & Dahmen, K. A. Crackling noise in disordered materials. Annu. Rev. Condens. Matter Phys. 5, 233–254 (2014).
(
10.1146/annurev-conmatphys-031113-133838
) / Annu. Rev. Condens. Matter Phys. by EKH Salje (2014) -
Březina, B., Fousek, J. & Glanc, A. Barkhausen pulses in BaTiO3 connected with 90° switching processes. Czechoslov. J. Phys. 11, 595–601 (1961).
(
10.1007/BF01689156
) / Czechoslov. J. Phys. by B Březina (1961) -
Miller, R. C. On the origin of Barkhausen pulses in BaTiO3. J. Phys. Chem. Solids 17, 93–100 (1960).
(
10.1016/0022-3697(60)90180-3
) / J. Phys. Chem. Solids by RC Miller (1960) -
Tan, C. D. et al. Electrical studies of Barkhausen switching noise in ferroelectric PZT: critical exponents and temperature dependence. Phys. Rev. Mater. 3, 034402 (2019).
(
10.1103/PhysRevMaterials.3.034402
) / Phys. Rev. Mater. by CD Tan (2019) -
Puchberger, S. et al. The noise of many needles: jerky domain wall propagation in PbZrO3 and LaAlO3. APL Mater. 5, 046102 (2017).
(
10.1063/1.4979616
) / APL Mater. by S Puchberger (2017) -
Soprunyuk, V. et al. Strain intermittency due to avalanches in ferroelastic and porous materials. J. Phys. Condens. Matter 29, 224002 (2017).
(
10.1088/1361-648X/aa6bd2
) / J. Phys. Condens. Matter by V Soprunyuk (2017) -
Harrison, R. J. & Salje, E. K. H. The noise of the needle: avalanches of a single progressing needle domain in LaAlO3. Appl. Phys. Lett. 97, 021907 (2010).
(
10.1063/1.3460170
) / Appl. Phys. Lett. by RJ Harrison (2010) -
Casals, B., van Dijken, S., Herranz, G. & Salje, E. K. H. Electric-field-induced avalanches and glassiness of mobile ferroelastic twin domains in cryogenic SrTiO3. Phys. Rev. Res 1, 032025 (2019).
(
10.1103/PhysRevResearch.1.032025
) / Phys. Rev. Res by B Casals (2019) -
Casals, B., Nataf, G. F., Pesquera, D. & Salje, E. K. H. Avalanches from charged domain wall motion in BaTiO3 during ferroelectric switching. APL Mater. 8, 011105 (2020).
(
10.1063/1.5128892
) / APL Mater. by B Casals (2020) -
Kustov, S., Liubimova, I. & Salje, E. K. H. Domain dynamics in quantum-paraelectric SrTiO3. Phys. Rev. Lett. 124, 016801 (2020).
(
10.1103/PhysRevLett.124.016801
) / Phys. Rev. Lett. by S Kustov (2020) -
Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25, 1–9 (1972).
(
10.1080/14786437208229210
) / Phil. Mag. by PW Anderson (1972) -
Kirkpatrick, S. & Sherrington, D. Infinite-ranged models of spin-glasses. Phys. Rev. B 17, 4384–4403 (1978).
(
10.1103/PhysRevB.17.4384
) / Phys. Rev. B by S Kirkpatrick (1978) -
Eliseev, E. A. et al. Conductivity of twin-domain-wall/surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 86, 085416 (2012).
(
10.1103/PhysRevB.86.085416
) / Phys. Rev. B by EA Eliseev (2012) -
Eliseev, E. A. et al. Surface effect on domain wall width in ferroelectrics. J. Appl. Phys. 106, 084102 (2009).
(
10.1063/1.3236644
) / J. Appl. Phys. by EA Eliseev (2009) -
Morozovska, A. N. et al. Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau–Ginzburg–Devonshire approach. Phys. Rev. B 80, 214110 (2009).
(
10.1103/PhysRevB.80.214110
) / Phys. Rev. B by AN Morozovska (2009)
Dates
Type | When |
---|---|
Created | 4 years, 10 months ago (Sept. 22, 2020, 11:03 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 6, 2022, 10:44 p.m.) |
Indexed | 1 hour, 13 minutes ago (Aug. 21, 2025, 8:14 a.m.) |
Issued | 4 years, 10 months ago (Sept. 22, 2020) |
Published | 4 years, 10 months ago (Sept. 22, 2020) |
Published Online | 4 years, 10 months ago (Sept. 22, 2020) |
@article{Nataf_2020, title={Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials}, volume={2}, ISSN={2522-5820}, url={http://dx.doi.org/10.1038/s42254-020-0235-z}, DOI={10.1038/s42254-020-0235-z}, number={11}, journal={Nature Reviews Physics}, publisher={Springer Science and Business Media LLC}, author={Nataf, G. F. and Guennou, M. and Gregg, J. M. and Meier, D. and Hlinka, J. and Salje, E. K. H. and Kreisel, J.}, year={2020}, month=sep, pages={634–648} }