Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Physics (297)
Authors
3
- Kin Fai Mak (first)
- Jie Shan (additional)
- Daniel C. Ralph (additional)
References
135
Referenced
442
-
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nat. Mater. by AK Geim (2007) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
(
10.1038/natrevmats.2017.33
) / Nat. Rev. Mater. by S Manzeli (2017) -
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014).
(
10.1038/nnano.2014.214
) / Nat. Nanotechnol. by W Han (2014) -
Tongay, S., Varnoosfaderani, S. S., Appleton, B. R., Wu, J. & Hebard, A. F. Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett. 101, 123105 (2012).
(
10.1063/1.4753797
) / Appl. Phys. Lett. by S Tongay (2012) -
Yan, S. et al. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 106, 012408 (2015).
(
10.1063/1.4905656
) / Appl. Phys. Lett. by S Yan (2015) -
Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).
(
10.1126/sciadv.aat3672
) / Sci. Adv. by Z Guguchia (2018) -
Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).
(
10.1103/PhysRevB.94.184428
) / Phys. Rev. B by BL Chittari (2016) -
Liu, J., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).
(
10.1039/C5CP04835D
) / Phys. Chem. Chem. Phys. by J Liu (2016) -
Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).
(
10.1103/PhysRevB.91.235425
) / Phys. Rev. B by N Sivadas (2015) -
Wang, H., Eyert, V. & Schwingenschlögl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Condens. Matter 23, 116003 (2011).
(
10.1088/0953-8984/23/11/116003
) / J. Phys. Condens. Matter by H Wang (2011) -
Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).
(
10.1039/C5TC02840J
) / J. Mater. Chem. C. by W-B Zhang (2015) - Lebègue, S., Björkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013). / Phys. Rev. X by S Lebègue (2013)
-
Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).
(
10.1073/pnas.1219420110
) / Proc. Natl Acad. Sci. USA by X Li (2013) -
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). The first optical probe of magnetic states in 2D Cr
2
Ge
2
Te
6.
(
10.1038/nature22060
) / Nature by C Gong (2017) -
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). The first demonstration of layer number dependent magnetic states in 2D CrI
3.
(
10.1038/nature22391
) / Nature by B Huang (2017) -
Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).
(
10.1103/RevModPhys.89.025006
) / Rev. Mod. Phys. by F Hellman (2017) -
Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).
(
10.1088/1361-6463/aa81a1
) / J. Phys. D by D Sander (2017) -
Bromberg, D. M., Morris, D. H., Pileggi, L. & Zhu, J. Novel STT-MTJ device enabling all-metallic logic circuits. IEEE Trans. Magn. 48, 3215–3218 (2012).
(
10.1109/TMAG.2012.2197186
) / IEEE Trans. Magn. by DM Bromberg (2012) -
Datta, S., Salahuddin, S. & Behin-Aein, B. Non-volatile spin switch for Boolean and non-Boolean logic. Appl. Phys. Lett. 101, 252411 (2012).
(
10.1063/1.4769989
) / Appl. Phys. Lett. by S Datta (2012) -
Arias, R. & Mills, D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B 60, 7395–7409 (1999).
(
10.1103/PhysRevB.60.7395
) / Phys. Rev. B by R Arias (1999) -
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
(
10.1038/nature23905
) / Nature by K Kang (2017) -
Fisher, M. E. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597–616 (1974).
(
10.1103/RevModPhys.46.597
) / Rev. Mod. Phys. by ME Fisher (1974) -
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
(
10.1126/sciadv.1603113
) / Sci. Adv. by D Zhong (2017) -
Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).
(
10.1038/s41566-018-0204-6
) / Nat. Photon. by KF Mak (2018) -
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
(
10.1038/nphys2942
) / Nat. Phys. by X Xu (2014) -
Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–49 (2010).
(
10.1063/1.3541944
) / Phys. Today by M Eschrig (2010) -
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
(
10.1103/RevModPhys.82.3045
) / Rev. Mod. Phys. by MZ Hasan (2010) -
Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).
(
10.1021/acs.nanolett.8b03321
) / Nano Lett. by N Sivadas (2018) -
Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).
(
10.1021/acs.nanolett.8b03315
) / Nano Lett. by Q Tong (2018) -
McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).
(
10.3390/cryst7050121
) / Crystals by MA McGuire (2017) -
Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).
(
10.1016/0167-2738(86)90055-X
) / Solid State Ion. by R Brec (1986) -
Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der waals layered materials. Adv. Mater. 29, 1602852 (2017).
(
10.1002/adma.201602852
) / Adv. Mater. by MA Susner (2017) -
Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
(
10.1038/s41586-018-0631-z
) / Nature by KS Burch (2018) -
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
(
10.1126/science.aav4450
) / Science by C Gong (2019) -
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
(
10.1038/s41565-019-0438-6
) / Nat. Nanotechnol. by M Gibertini (2019) -
McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).
(
10.1021/cm504242t
) / Chem. Mater. by MA McGuire (2015) -
Khomskii, D. I. in Transition Metal Compounds Ch. 2 (Cambridge Univ. Press, 2014).
(
10.1017/CBO9781139096782
) -
Stamokostas, G. L. & Fiete, G. A. Mixing of t
2g–e
g orbitals in 4d and 5d transition metal oxides. Phys. Rev. B 97, 085150 (2018).
(
10.1103/PhysRevB.97.085150
) / Phys. Rev. B by GL Stamokostas (2018) -
Feldkemper, S. & Weber, W. Generalized calculation of magnetic coupling constants for Mott–Hubbard insulators: application to ferromagnetic Cr compounds. Phys. Rev. B 57, 7755–7766 (1998).
(
10.1103/PhysRevB.57.7755
) / Phys. Rev. B by S Feldkemper (1998) -
Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).
(
10.1088/2053-1583/aa75ed
) / 2D Mater. by JL Lado (2017) -
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
(
10.1126/science.1234414
) / Science by C-Z Chang (2013) -
Siberchicot, B., Jobic, S., Carteaux, V., Gressier, P. & Ouvrard, G. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J. Phys. Chem. 100, 5863–5867 (1996).
(
10.1021/jp952188s
) / J. Phys. Chem. by B Siberchicot (1996) -
Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
(
10.1038/s41586-018-0626-9
) / Nature by Y Deng (2018) -
Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).
(
10.1038/s41563-018-0149-7
) / Nat. Mater. by Z Fei (2018) -
Morosan, E. et al. Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75, 104401 (2007).
(
10.1103/PhysRevB.75.104401
) / Phys. Rev. B by E Morosan (2007) -
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
(
10.1103/RevModPhys.90.015005
) / Rev. Mod. Phys. by V Baltz (2018) -
Ressouche, E. et al. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity. Phys. Rev. B 82, 100408 (2010).
(
10.1103/PhysRevB.82.100408
) / Phys. Rev. B by E Ressouche (2010) -
Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi A 72, 161–168 (1982).
(
10.1002/pssa.2210720116
) / Phys. Status Solidi A by B Kuhlow (1982) -
Jacobs, I. S. & Lawrence, P. E. Metamagnetic phase transitions and hysteresis in FeCl2. Phys. Rev. 164, 866–878 (1967).
(
10.1103/PhysRev.164.866
) / Phys. Rev. by IS Jacobs (1967) -
Wilkinson, M. K., Cable, J. W., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeCl2, and CoCl2. Phys. Rev. 113, 497–507 (1959).
(
10.1103/PhysRev.113.497
) / Phys. Rev. by MK Wilkinson (1959) - Deng, Y. et al. Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/1904.11468 (2019).
-
Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Jpn 15, 1664–1668 (1960).
(
10.1143/JPSJ.15.1664
) / J. Phys. Soc. Jpn by I Tsubokawa (1960) -
Rule, K. C., McIntyre, G. J., Kennedy, S. J. & Hicks, T. J. Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007).
(
10.1103/PhysRevB.76.134402
) / Phys. Rev. B by KC Rule (2007) -
Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
(
10.1103/PhysRevB.92.224408
) / Phys. Rev. B by AR Wildes (2015) -
Tokunaga, Y. et al. Multiferroicity in NiBr2 with long-wavelength cycloidal spin structure on a triangular lattice. Phys. Rev. B 84, 060406 (2011).
(
10.1103/PhysRevB.84.060406
) / Phys. Rev. B by Y Tokunaga (2011) -
Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).
(
10.1103/PhysRevB.87.014429
) / Phys. Rev. B by T Kurumaji (2013) -
Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).
(
10.1103/PhysRevLett.106.167206
) / Phys. Rev. Lett. by T Kurumaji (2011) -
Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).
(
10.1088/0022-3727/38/8/R01
) / J. Phys. D by F Manfred (2005) -
Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299–313 (2009).
(
10.1140/epjb/e2009-00336-7
) / Eur. Phys. J. B by J-P Rivera (2009) -
Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).
(
10.1038/nnano.2015.22
) / Nat. Nanotechnol. by F Matsukura (2015) -
Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).
(
10.1103/PhysRevLett.102.146805
) / Phys. Rev. Lett. by AM Essin (2009) -
Hirakawa, K., Kadowaki, H. & Ubukoshi, K. Study of frustration effects in two-dimensional triangular lattice antiferromagnets–neutron powder diffraction study of VX2, X≡Cl, Br and I. J. Phys. Soc. Jpn 52, 1814–1824 (1983).
(
10.1143/JPSJ.52.1814
) / J. Phys. Soc. Jpn by K Hirakawa (1983) -
Johnson, R. D. et al. Monoclinic crystal structure of α–RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).
(
10.1103/PhysRevB.92.235119
) / Phys. Rev. B by RD Johnson (2015) -
Kim, H.-S., V, V. S., Catuneanu, A. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B 91, 241110 (2015).
(
10.1103/PhysRevB.91.241110
) / Phys. Rev. B by H-S Kim (2015) -
Plumb, K. W. et al. α–RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
(
10.1103/PhysRevB.90.041112
) / Phys. Rev. B by KW Plumb (2014) -
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
(
10.1038/nmat4604
) / Nat. Mater. by A Banerjee (2016) -
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
(
10.1038/s41586-018-0274-0
) / Nature by Y Kasahara (2018) -
Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).
(
10.1103/PhysRevLett.117.267203
) / Phys. Rev. Lett. by N Sivadas (2016) -
Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).
(
10.1103/PhysRevB.99.144401
) / Phys. Rev. B by P Jiang (2019) -
Cheng, R., Okamoto, S. & Xiao, D. Spin Nernst effect of magnons in collinear antiferromagnets. Phys. Rev. Lett. 117, 217202 (2016).
(
10.1103/PhysRevLett.117.217202
) / Phys. Rev. Lett. by R Cheng (2016) -
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI
3 as a tunnel barrier.
(
10.1126/science.aar3617
) / Science by DR Klein (2018) -
Zhang, X. et al. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6. Jpn J. Appl. Phys. 55, 033001 (2016).
(
10.7567/JJAP.55.033001
) / Jpn J. Appl. Phys. by X Zhang (2016) -
MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon–magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).
(
10.1103/PhysRevLett.123.047204
) / Phys. Rev. Lett. by D MacNeill (2019) -
Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).
(
10.1038/s41928-018-0087-z
) / Nat. Electron. by D Ghazaryan (2018) - Xing, W. et al. Magnon transport in quasi-two-dimensional van der waals antiferromagnets. Phys. Rev. X 9, 011026 (2019). / Phys. Rev. X by W Xing (2019)
- Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018). / Phys. Rev. X by SS Pershoguba (2018)
- Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018). / Phys. Rev. X by L Chen (2018)
-
Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
(
10.1021/acs.nanolett.6b03052
) / Nano Lett. by J-U Lee (2016) -
Du, K.-z et al. Weak van der waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).
(
10.1021/acsnano.5b05927
) / ACS Nano by K-z Du (2016) -
Zhou, B. et al. Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3. J. Phys. Chem. Solids 128, 291–295 (2018).
(
10.1016/j.jpcs.2018.01.026
) / J. Phys. Chem. Solids by B Zhou (2018) -
Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).
(
10.1039/C5TC03463A
) / J. Mater. Chem. C by M-W Lin (2016) -
Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).
(
10.1088/2053-1583/3/2/025035
) / 2D Mater. by Y Tian (2016) -
Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).
(
10.1038/s41467-018-07547-6
) / Nat. Commun. by W Jin (2018) -
Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).
(
10.1016/j.ssc.2019.113662
) / Solid State Commun. by D Soriano (2019) - Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI 3 as a tunnel barrier. / Nat. Commun. by Z Wang (2018)
- Klein, D. R. et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. Preprint at https://arxiv.org/abs/1903.00002 (2019).
-
Sun, Z. et al. Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer CrI3. Nature 572, 497–501 (2019).
(
10.1038/s41586-019-1445-3
) / Nature by Z Sun (2019) -
Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Preprint at https://arxiv.org/abs/1905.10905 (2019).
(
10.1038/s41563-019-0506-1
) -
Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Preprint at https://arxiv.org/abs/1905.10860 (2019).
(
10.1038/s41563-019-0505-2
) -
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
(
10.1103/PhysRevLett.17.1133
) / Phys. Rev. Lett. by ND Mermin (1966) -
Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).
(
10.1038/s41565-018-0063-9
) / Nat. Nanotechnol. by M Bonilla (2018) -
Ma, Y. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).
(
10.1021/nn204667z
) / ACS Nano by Y Ma (2012) -
Fuh, H.-R., Yan, B., Wu, S.-C., Felser, C. & Chang, C.-R. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys. 18, 113038 (2016).
(
10.1088/1367-2630/18/11/113038
) / New J. Phys. by H-R Fuh (2016) -
O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).
(
10.1021/acs.nanolett.8b00683
) / Nano Lett. by DJ O’Hara (2018) -
Weiglhofer, W. S. & Lakhtakia, A. (eds) Introduction to Complex Mediums for Optics and Electromagnetics 175 (SPIE, 2003).
(
10.1117/3.504610
) -
Schubert, M., Kühne, P., Darakchieva, V. & Hofmann, T. Optical Hall effect — model description: tutorial. J. Opt. Soc. Am. A 33, 1553–1568 (2016).
(
10.1364/JOSAA.33.001553
) / J. Opt. Soc. Am. A by M Schubert (2016) -
Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).
(
10.1103/PhysRev.97.334
) / Phys. Rev. by PN Argyres (1955) -
Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).
(
10.1126/science.aav6926
) / Science by L Thiel (2019) -
Kapitulnik, A., Xia, J., Schemm, E. & Palevski, A. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J. Phys. 11, 055060 (2009).
(
10.1088/1367-2630/11/5/055060
) / New J. Phys. by A Kapitulnik (2009) -
Sato, K. Measurement of magneto-optical Kerr effect using piezo-birefringent modulator. Jpn J. Appl. Phys. 20, 2403–2409 (1981).
(
10.1143/JJAP.20.2403
) / Jpn J. Appl. Phys. by K Sato (1981) -
Lee, J.-W., Kim, J., Kim, S.-K., Jeong, J.-R. & Shin, S.-C. Full vectorial spin-reorientation transition and magnetization reversal study in ultrathin ferromagnetic films using magneto-optical Kerr effects. Phys. Rev. B 65, 144437 (2002).
(
10.1103/PhysRevB.65.144437
) / Phys. Rev. B by J-W Lee (2002) -
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018). Demonstration of efficient tuning of magnetic states in bilayer CrI
3 by electrostatic doping.
(
10.1038/s41565-018-0135-x
) / Nat. Nanotechnol. by S Jiang (2018) -
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018). The first demonstration of magnetoelectricity in antiferromagnetic bilayer CrI
3.
(
10.1038/s41563-018-0040-6
) / Nat. Mater. by S Jiang (2018) -
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018). Demonstration of tuning of magnetic states in bilayer CrI
3 by electric field effects.
(
10.1038/s41565-018-0121-3
) / Nat. Nanotechnol. by B Huang (2018) -
Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).
(
10.1038/nnano.2015.337
) / Nat. Nanotechnol. by J Lee (2016) -
Lee, J., Wang, Z., Xie, H., Mak, K. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).
(
10.1038/nmat4931
) / Nat. Mater. by J Lee (2017) -
O’Dell, T. H. The electrodynamics of magneto-electric media. Phil. Mag. 7, 1653–1669 (1962).
(
10.1080/14786436208213701
) / Phil. Mag. by TH O'Dell (1962) -
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
(
10.1103/PhysRevLett.112.017205
) / Phys. Rev. Lett. by H Chen (2014) -
Rado, G. T. Magnetoelectric evidence for the attainability of time-reversed antiferromagnetic configurations by metamagnetic transitions in DyPO4. Phys. Rev. Lett. 23, 644–647 (1969).
(
10.1103/PhysRevLett.23.644
) / Phys. Rev. Lett. by GT Rado (1969) -
Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).
(
10.1038/s41567-017-0006-7
) / Nat. Phys. by KL Seyler (2018) -
Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).
(
10.1088/0034-4885/47/5/002
) / Rep. Prog. Phys. by J Ferre (1984) -
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
(
10.1103/RevModPhys.82.1539
) / Rev. Mod. Phys. by N Nagaosa (2010) - Coey, J. M. D. in Magnetism and Magnetic Materials Ch. 10 (Cambridge Univ. Press, 2009).
-
Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).
(
10.1021/acs.nanolett.8b01278
) / Nano Lett. by Z Wang (2018) -
Arai, M. et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl. Phys. Lett. 107, 103107 (2015).
(
10.1063/1.4930311
) / Appl. Phys. Lett. by M Arai (2015) -
Yamasaki, Y. et al. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2. 2D Mater. 4, 041007 (2017).
(
10.1088/2053-1583/aa8a2b
) / 2D Mater. by Y Yamasaki (2017) -
Lohmann, M. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous Hall effect in Pt. Nano Lett. 19, 2397–2403 (2019).
(
10.1021/acs.nanolett.8b05121
) / Nano Lett. by M Lohmann (2019) - Gupta, V. et al. Current-induced torques in heterostructures of 2D van der Waals magnets. Bull. Am. Phys. Soc. Abstr. P15.009 (2019).
-
Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunnelling. J. Phys. Condens. Matter 19, 165202 (2007).
(
10.1088/0953-8984/19/16/165202
) / J. Phys. Condens. Matter by JS Moodera (2007) -
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). The first demonstration of spin filtering and giant tunnel magnetoresistance using 2D CrI
3 as a tunnel barrier.
(
10.1126/science.aar4851
) / Science by T Song (2018) -
Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).
(
10.1021/acs.nanolett.8b01552
) / Nano Lett. by HH Kim (2018) -
Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).
(
10.1073/pnas.1902100116
) / Proc. Natl Acad. Sci. USA by HH Kim (2019) -
Gould, C. et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).
(
10.1103/PhysRevLett.93.117203
) / Phys. Rev. Lett. by C Gould (2004) - Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (ed. ten Haar, D.) Ch. 5 (Pergamon Press, 1975).
-
Coh, S., Vanderbilt, D., Malashevich, A. & Souza, I. Chern-Simons orbital magnetoelectric coupling in generic insulators. Phys. Rev. B 83, 085108 (2011).
(
10.1103/PhysRevB.83.085108
) / Phys. Rev. B by S Coh (2011) -
Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).
(
10.1038/s41565-018-0186-z
) / Nat. Nanotechnol. by Z Wang (2018) -
Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).
(
10.1038/s41928-019-0232-3
) / Nat. Electron. by S Jiang (2019) -
Cardoso, C., Soriano, D., García-Martínez, N. A. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).
(
10.1103/PhysRevLett.121.067701
) / Phys. Rev. Lett. by C Cardoso (2018) -
Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).
(
10.1063/1.2976435
) / Appl. Phys. Lett. by S Ikeda (2008) - Lee, I. et al. Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI3. Preprint at https://arxiv.org/abs/1902.00077 (2019).
-
Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).
(
10.1017/S1431927615015664
) / Microsc. Microanal. by MW Tate (2016) -
Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).
(
10.1038/natrevmats.2016.94
) / Nat. Rev. Mater. by Y Saito (2016) -
Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).
(
10.1103/PhysRevB.93.180501
) / Phys. Rev. B by BT Zhou (2016) -
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
(
10.1103/RevModPhys.90.015001
) / Rev. Mod. Phys. by NP Armitage (2018)
Dates
Type | When |
---|---|
Created | 5 years, 10 months ago (Sept. 27, 2019, 10:05 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 17, 2022, 2:41 p.m.) |
Indexed | 4 minutes ago (Aug. 21, 2025, 4:53 a.m.) |
Issued | 5 years, 10 months ago (Sept. 27, 2019) |
Published | 5 years, 10 months ago (Sept. 27, 2019) |
Published Online | 5 years, 10 months ago (Sept. 27, 2019) |
@article{Mak_2019, title={Probing and controlling magnetic states in 2D layered magnetic materials}, volume={1}, ISSN={2522-5820}, url={http://dx.doi.org/10.1038/s42254-019-0110-y}, DOI={10.1038/s42254-019-0110-y}, number={11}, journal={Nature Reviews Physics}, publisher={Springer Science and Business Media LLC}, author={Mak, Kin Fai and Shan, Jie and Ralph, Daniel C.}, year={2019}, month=sep, pages={646–661} }