Crossref journal-article
Springer Science and Business Media LLC
Communications Chemistry (297)
Abstract

AbstractGeTe-Sb2Te3 pseudobinary system, especially Ge2Sb2Te5 alloy, is the most desirable material to be commercialized in phase change random access memory. Directly resolving the local atomic arrangement of Ge2Sb2Te5 during intermediate steps is an effective method to understand its transition mechanism from face-centered-cubic to hexagonal phases. In this study, we provide insights into the atomic arrangement variation during face-centered-cubic to hexagonal transition process in Ge2Sb2Te5 alloy by using advanced atomic resolution energy dispersive X-ray spectroscopy. Induced by thermal annealing, randomly distributed germanium and antimony atoms would migrate to the specific (111) layer in different behaviors, and antimony atoms migrate earlier than germanium atoms during the phase transition process, gradually forming intermediate structures similar to hexagonal lattice. With the migration completed, the obtained stable hexagonal structure has a partially ordered stacking sequence described as below: -Te-Sbx/Gey-Te-Gex/Sby-Te-Gex/Sby-Te-Sbx/Gey-Te- (x > y), which is directly related to the migration process. The current visual fragments suggest a gradual transition mechanism, and guide the performance optimization of Ge2Sb2Te5 alloy.

Bibliography

Zheng, Y., Wang, Y., Xin, T., Cheng, Y., Huang, R., Liu, P., Luo, M., Zhang, Z., Lv, S., Song, Z., & Feng, S. (2019). Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Communications Chemistry, 2(1).

Authors 11
  1. Yonghui Zheng (first)
  2. Yong Wang (additional)
  3. Tianjiao Xin (additional)
  4. Yan Cheng (additional)
  5. Rong Huang (additional)
  6. Pan Liu (additional)
  7. Min Luo (additional)
  8. Zaoli Zhang (additional)
  9. Shilong Lv (additional)
  10. Zhitang Song (additional)
  11. Songlin Feng (additional)
References 56 Referenced 45
  1. Salinga, M. & Wuttig, M. Phase-change memories on a diet. Science 332, 543–544 (2011). (10.1126/science.1204093) / Science by M Salinga (2011)
  2. Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 10, 191–194 (2015). (10.1038/nnano.2015.29) / Nat. Nanotechnol. by HSP Wong (2015)
  3. Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017). (10.1126/science.aao3212) / Science by F Rao (2017)
  4. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007). (10.1038/nmat2009) / Nat. Mater. by M Wuttig (2007)
  5. Yamada, N. et al. Rapid-phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  6. Kim, W. et al. ALD-based confined PCM with a metallic liner toward unlimited endurance. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM) 4.2.1–4.2.4 (2016). (10.1109/IEDM.2016.7838343)
  7. Im, D. H. et al. A unified 7.5 nm dash-type confined cell for high performance PRAM device. In Proceedings of the 2008 IEEE International Electron Devices Meeting (IEDM) 1–4 (2008). (10.1109/IEDM.2008.4796654)
  8. Wang, Y. et al. Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory. Appl. Phys. Lett. 112, 133104 (2018). (10.1063/1.5012872) / Appl. Phys. Lett. by Y Wang (2018)
  9. Zhou, X. et al. Carbon-doped Ge2Sb2Te5 phase change material: a candidate for high-density phase change memory application. Appl. Phys. Lett. 101, 142104 (2012). (10.1063/1.4757137) / Appl. Phys. Lett. by X Zhou (2012)
  10. Lankhorst, M. H. R. et al. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005). (10.1038/nmat1350) / Nat. Mater. by MHR Lankhorst (2005)
  11. Wang, Y. et al. Understanding the early cycling evolution behaviors for phase change memory application. J. Appl. Phys. 116, 204503 (2014). (10.1063/1.4902851) / J. Appl. Phys. by Y Wang (2014)
  12. Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nat. Mater. 7, 399–405 (2008). (10.1038/nmat2157) / Nat. Mater. by J Hegedüs (2008)
  13. Li, T. et al. Carbon doping induced Ge local structure change in as-deposited Ge2Sb2Te5 film by EXAFS and Raman spectrum. AIP Adv. 8, 025201 (2018). (10.1063/1.5020614) / AIP Adv. by T Li (2018)
  14. Wang, Y. et al. RESET distribution improvement of phase change memory: the impact of Pre-programming. IEEE Electron Device Lett. 35, 536–538 (2014). (10.1109/LED.2014.2308909) / IEEE Electron Device Lett. by Y Wang (2014)
  15. Njoroge, W. K., Wöltgens, H.-W. & Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. 20, 230–233 (2001). (10.1116/1.1430249) / J. Vac. Sci. Technol. by WK Njoroge (2001)
  16. Cheng, H. Y. et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. In Proceedings of the 2011 IEEE International Electron Devices Meeting (IEDM) 3.4.1–3.4.4 (2011).
  17. Park, I. M. et al. Thermomechnaical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory. Thin Solid Films 517, 848–852 (2008). (10.1016/j.tsf.2008.08.194) / Thin Solid Films by IM Park (2008)
  18. Do, K. et al. TEM study on volume changes and void formation in GeSbTe fims, with repeated phase changes. Electrochem. Solid-State Lett. 13, H284–H286 (2010). (10.1149/1.3439647) / Electrochem. Solid-State Lett. by K Do (2010)
  19. Simpson, R. E. et al. Interfacial phase-change memory. Nat. Nanotechnol. 6, 501–505 (2011). (10.1038/nnano.2011.96) / Nat. Nanotechnol. by RE Simpson (2011)
  20. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020 (2000). (10.1063/1.1314323) / J. Appl. Phys. by N Yamada (2000)
  21. Eom, J.-H. et al. Global and local structures of the Ge–Sb–Te ternary alloy system for a phase-change memory device. Phys. Rev. B 73, 214202 (2006). (10.1103/PhysRevB.73.214202) / Phys. Rev. B by JH Eom (2006)
  22. Sun, Z., Zhou, J. & Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006). (10.1103/PhysRevLett.96.055507) / Phys. Rev. Lett. by Z Sun (2006)
  23. He, S. et al. Metastable stacking-polymorphism in Ge2Sb2Te5. Inorg. Chem. 56, 11990–11997 (2017). (10.1021/acs.inorgchem.7b01970) / Inorg. Chem. by S He (2017)
  24. Zhang, B. et al. Vacancy structures and melting behavior in rock-salt GeSbTe. Sci. Rep. 6, 25453 (2016). (10.1038/srep25453) / Sci. Rep. by B Zhang (2016)
  25. Zhang, B. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 108, 191902 (2016). (10.1063/1.4949011) / Appl. Phys. Lett. by B Zhang (2016)
  26. Kooi, B. J., Groot, W. M. G. & Hosson, J. T. M. D. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys. 95, 924 (2004). (10.1063/1.1636259) / J. Appl. Phys. by BJ Kooi (2004)
  27. Petrov, I. I., Imamov, R. M. & Pinsker, Z. G. Electron-diffraction determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Crystallogr. 13, 339–342 (1968). / Sov. Phys. Crystallogr. by II Petrov (1968)
  28. Matsunaga, T., Yamada, N. & Kubota, Y. Structures of stable and metastable GeSbTe, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems. Acta Crystallogr. Sect. B 60, 685–691 (2004). (10.1107/S0108768104022906) / Acta Crystallogr. Sect. B by T Matsunaga (2004)
  29. Yu, X. & Robertson, J. Atomic layering, intermixing and switching mechanism in Ge–Sb–Te based chalcogenide superlattices. Sci. Rep. 6, 37325 (2016). (10.1038/srep37325) / Sci. Rep. by X Yu (2016)
  30. Hernández, W. I. & Raty, J.-Y. Ab initio density functional theory study of the electronic, dynamic, and thermoelectric properties of the crystalline pseudobinary chalcogenide (GeTe)x/(Sb2Te3) (x = 1, 2, 3). Phys. Rev. B 97, 245205 (2018). (10.1103/PhysRevB.97.245205) / Phys. Rev. B by WI Hernández (2018)
  31. Singh, J. et al. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: a proposed mechanism for the formation of crystalline Ge2Sb2Te5. J. Solid State Chem. 260, 124–131 (2018). (10.1016/j.jssc.2018.01.021) / J. Solid State Chem. by J Singh (2018)
  32. Da Silva, J. L. F., Walsh, A. & Lee, H. Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compunds. Phys. Rev. B 78, 22411 (2008). / Phys. Rev. B by JLF Da Silva (2008)
  33. Lee, G. & Jhi, S.-H. Ab initio studies of structural and electronic properties of the crystalline Ge2Sb2Te5. Phys. Rev. B 77, 153201 (2008). (10.1103/PhysRevB.77.153201) / Phys. Rev. B by G Lee (2008)
  34. Sosso, G. C. et al. Vibrational properties of hexagonal Ge2Sb2Te5 from first principles. J. Phys. Condens. Matter 21, 245401 (2009). (10.1088/0953-8984/21/24/245401) / J. Phys. Condens. Matter by GC Sosso (2009)
  35. Lotnyk, A. et al. Local atomic arrangements and lattice distortions in layered Ge–Sb–Te crystal structures. Sci. Rep. 6, 26724 (2016). (10.1038/srep26724) / Sci. Rep. by A Lotnyk (2016)
  36. Mio, A. M. et al. Chemical and structural arrangement of the trigonal phase in GeSbTe thin films. Nanotechnology 28, 065706 (2017). (10.1088/1361-6528/28/6/065706) / Nanotechnology by AM Mio (2017)
  37. Lotnyk, A. et al. Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised GeSbTe phase change thin films. Acta Mater. 105, 1–8 (2016). (10.1016/j.actamat.2015.12.010) / Acta Mater. by A Lotnyk (2016)
  38. Zhang, W., Jeong, H. S. & Song, S. A. Martensitic transformation in Ge2Sb2Te5 alloy. Adv. Eng. Mater. 10, 67–72 (2008). (10.1002/adem.200700230) / Adv. Eng. Mater. by W Zhang (2008)
  39. Zhang, W. et al. How important is the {103} plane of stable GeSbTe for phase change memory? J. Microsc. 259, 10–15 (2015). (10.1111/jmi.12242) / J. Microsc. by W Zhang (2015)
  40. Park, Y. J., Lee, J. Y. & Kim, Y. T. In situ transmission electron microscopy study of the nucleation and grain growth of Ge2Sb2Te5 thin films. Appl. Surf. Sci. 252, 8102–8106 (2006). (10.1016/j.apsusc.2005.10.026) / Appl. Surf. Sci. by YJ Park (2006)
  41. Kim, E. T., Lee, J. Y. & Kim, Y. T. Investigation of the structural transformation behavior of Ge2Sb2Te5 thin films using high resolution electron microscopy. Appl. Phys. Lett. 91, 101909 (2007). (10.1063/1.2783478) / Appl. Phys. Lett. by ET Kim (2007)
  42. Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change material. Nat. Mater. 11, 952–956 (2012). (10.1038/nmat3456) / Nat. Mater. by W Zhang (2012)
  43. Bragaglia, V. et al. Metal–insulator transition driven by vacancy ordering in GeSbTe phase change materials. Sci. Rep. 6, 23843 (2016). (10.1038/srep23843) / Sci. Rep. by V Bragaglia (2016)
  44. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science. 2nd ed., (Springer, Berlin, 2009). (10.1007/978-0-387-76501-3) / Transmission Electron Microscopy: A Textbook for Materials Science by DB Williams (2009)
  45. Ross, U. et al. Direct imaging of crystal structure and defects in metastable GeSbTe by quantitative aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 104, 121904 (2014). (10.1063/1.4869471) / Appl. Phys. Lett. by U Ross (2014)
  46. Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013). (10.1021/nl401186d) / Nano Lett. by Y Jiang (2013)
  47. Rao, F. et al. Direct observation of titanium-centered octahedral in titanium–antimony–tellurium phase-change material. Nat. Commun. 6, 10040 (2015). (10.1038/ncomms10040) / Nat. Commun. by F Rao (2015)
  48. Lotnyk, A. et al. Van der Waals interfacial bonding and intermixing in GeTe–Sb2Te3-based superlattices. Nano Res. 11, 1676–1686 (2018). (10.1007/s12274-017-1785-y) / Nano Res. by A Lotnyk (2018)
  49. Kothleiner, G. et al. Quantitative elemental mapping at atomic resolution using X-ray spectroscopy. Phys. Rev. Lett. 112, 085501 (2014). (10.1103/PhysRevLett.112.085501) / Phys. Rev. Lett. by G Kothleiner (2014)
  50. Lugg, N. R. et al. On the quantitativeness of EDS STEM. Ultramicroscopy 151, 150–159 (2015). (10.1016/j.ultramic.2014.11.029) / Ultramicroscopy by NR Lugg (2015)
  51. Bong-Sub, L. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic and hexagonal phases. J. Appl. Phys. 97, 093509 (2005). (10.1063/1.1884248) / J. Appl. Phys. by L Bong-Sub (2005)
  52. Kalb, J., Spaepen, F. & Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389 (2003). (10.1063/1.1540227) / J. Appl. Phys. by J Kalb (2003)
  53. Urban, P. et al. Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5. CrystEngComm 15, 4823–4829 (2013). (10.1039/c3ce26956f) / CrystEngComm by P Urban (2013)
  54. Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013). (10.1038/nature12009) / Nature by CC Chen (2013)
  55. Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015). (10.1038/nmat4426) / Nat. Mater. by R Xu (2015)
  56. Li, J. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2, 17111 (2017). (10.1038/nenergy.2017.111) / Nat. Energy by J Li (2017)
Dates
Type When
Created 6 years, 6 months ago (Feb. 1, 2019, 6:06 a.m.)
Deposited 2 years, 8 months ago (Dec. 17, 2022, 2:06 p.m.)
Indexed 1 month, 1 week ago (July 11, 2025, 6:35 a.m.)
Issued 6 years, 6 months ago (Feb. 1, 2019)
Published 6 years, 6 months ago (Feb. 1, 2019)
Published Online 6 years, 6 months ago (Feb. 1, 2019)
Funders 0

None

@article{Zheng_2019, title={Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5}, volume={2}, ISSN={2399-3669}, url={http://dx.doi.org/10.1038/s42004-019-0114-7}, DOI={10.1038/s42004-019-0114-7}, number={1}, journal={Communications Chemistry}, publisher={Springer Science and Business Media LLC}, author={Zheng, Yonghui and Wang, Yong and Xin, Tianjiao and Cheng, Yan and Huang, Rong and Liu, Pan and Luo, Min and Zhang, Zaoli and Lv, Shilong and Song, Zhitang and Feng, Songlin}, year={2019}, month=feb }