Crossref journal-article
Springer Science and Business Media LLC
Communications Biology (297)
Abstract

AbstractSuper-resolution fluorescence microscopy plays a crucial role in our understanding of cell structure and function by reporting cellular ultrastructure with 20–30 nm resolution. However, this resolution is insufficient to image macro-molecular machinery at work. A path to improve resolution is to image under cryogenic conditions. This substantially increases the brightness of most fluorophores and preserves native ultrastructure much better than chemical fixation. Cryogenic conditions are, however, underutilised because of the lack of compatible high numerical aperture objectives. Here, using a low-cost super-hemispherical solid immersion lens (superSIL) and a basic set-up we achieve 12 nm resolution under cryogenic conditions, to our knowledge the best yet attained in cells using simple set-ups and/or commercial systems. By also allowing multicolour imaging, and by paving the way to total-internal-reflection fluorescence imaging of mammalian cells under cryogenic conditions, superSIL microscopy opens a straightforward route to achieve unmatched resolution on bacterial and mammalian cell samples.

Bibliography

Wang, L., Bateman, B., Zanetti-Domingues, L. C., Moores, A. N., Astbury, S., Spindloe, C., Darrow, M. C., Romano, M., Needham, S. R., Beis, K., Rolfe, D. J., Clarke, D. T., & Martin-Fernandez, M. L. (2019). Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution. Communications Biology, 2(1).

Authors 13
  1. Lin Wang (first)
  2. Benji Bateman (additional)
  3. Laura C. Zanetti-Domingues (additional)
  4. Amy N. Moores (additional)
  5. Sam Astbury (additional)
  6. Christopher Spindloe (additional)
  7. Michele C. Darrow (additional)
  8. Maria Romano (additional)
  9. Sarah R. Needham (additional)
  10. Konstantinos Beis (additional)
  11. Daniel J. Rolfe (additional)
  12. David T. Clarke (additional)
  13. Marisa L. Martin-Fernandez (additional)
References 51 Referenced 58
  1. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000). (10.1046/j.1365-2818.2000.00710.x) / J. Microsc. by MG Gustafsson (2000)
  2. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). (10.1364/OL.19.000780) / Opt. Lett. by SW Hell (1994)
  3. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793 (2006). (10.1038/nmeth929) / Nat. Methods by MJ Rust (2006)
  4. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). (10.1126/science.1127344) / Science by E Betzig (2006)
  5. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006). (10.1529/biophysj.106.091116) / Biophys. J. by ST Hess (2006)
  6. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002). (10.1016/S0006-3495(02)75618-X) / Biophys. J. by RE Thompson (2002)
  7. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009). (10.1073/pnas.0813131106) / Proc. Natl Acad. Sci. U.S.A. by G Shtengel (2009)
  8. Kellenberger, E. et al. Artefacts and morphological changes during chemical fixation. J. Microsc. 168, 181–201 (1992). (10.1111/j.1365-2818.1992.tb03260.x) / J. Microsc. by E Kellenberger (1992)
  9. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014). (10.1021/nl501870p) / Nano Lett. by R Kaufmann (2014)
  10. Liu, B. et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5, 13017 (2015). (10.1038/srep13017) / Sci. Rep. by B Liu (2015)
  11. Nahmani, M., Lanahan, C., DeRosier, D. & Turrigiano, G. G. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions. Proc. Natl Acad. Sci. USA 114, 3832–3836 (2017). (10.1073/pnas.1618206114) / Proc. Natl Acad. Sci. U.S.A. by M Nahmani (2017)
  12. Faoro, R. et al. Aberration-corrected cryoimmersion light microscopy. Proc. Natl Acad. Sci. USA 115, 1204–1209 (2018). (10.1073/pnas.1717282115)
  13. Weisenburger, S. et al. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nat. Methods 14, 141 (2017). (10.1038/nmeth.4141) / Nat. Methods by S Weisenburger (2017)
  14. Furubayashi, T. et al. Three-dimensional localization of an individual fluorescent molecule with Angstrom precision. J. Am. Chem. Soc. 139, 8990–8994 (2017). (10.1021/jacs.7b03899) / J. Am. Chem. Soc. by T Furubayashi (2017)
  15. Terris, B., Mamin, H., Rugar, D., Studenmund, W. & Kino, G. Near-field optical data storage using a solid immersion lens. Appl. Phys. Lett. 65, 388–390 (1994). (10.1063/1.112341) / Appl. Phys. Lett. by B Terris (1994)
  16. Chen, R., Agarwal, K., Sheppard, C. J., Phang, J. C. & Chen, X. A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope. Opt. Express 21, 14316–14330 (2013). (10.1364/OE.21.014316) / Opt. Express by R Chen (2013)
  17. Zhang, J., See, C. & Somekh, M. Imaging performance of widefield solid immersion lens microscopy. Appl. Opt. 46, 4202–4208 (2007). (10.1364/AO.46.004202) / Appl. Opt. by J Zhang (2007)
  18. Wang, L., Pitter, M. C. & Somekh, M. G. Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens. Appl. Opt. 49, 6160–6169 (2010). (10.1364/AO.49.006160) / Appl. Opt. by L Wang (2010)
  19. Wang, L. et al. Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy. Opt. Express 20, 3311–3324 (2012). (10.1364/OE.20.003311) / Opt. Express by L Wang (2012)
  20. Wildanger, D. et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-Ångström emitter localization. Adv. Mater. 24, OP309-13 (2012). (10.1002/adma.201203033)
  21. Kim, W.-C. et al. Investigation on achieving super-resolution by solid immersion lens based STED microscopy. Opt. Express 25, 16629–16642 (2017). (10.1364/OE.25.016629) / Opt. Express by WC Kim (2017)
  22. Wang, L., Pitter, M. C. & Somekh, M. G. Wide-field high-resolution structured illumination solid immersion fluorescence microscopy. Opt. Lett. 36, 2794–2796 (2011). (10.1364/OL.36.002794) / Opt. Lett. by L Wang (2011)
  23. Liu, Z. et al. High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots. Appl. Phys. Lett. 87, 071905 (2005). (10.1063/1.2012532) / Appl. Phys. Lett. by Z Liu (2005)
  24. Yoshita, M., Koyama, K., Hayamizu, Y., Baba, M. & Akiyama, H. Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens. Jpn. J. Appl. Phys. 41, L858–L860 (2002). (10.1143/JJAP.41.L858) / Jpn. J. Appl. Phys. by M Yoshita (2002)
  25. Muller, M. Introduction to Confocal Fluorescence Microscopy, Vol. 69 (SPIE Press, Bellingham, WA, US, 2006).
  26. Smith, W. J. Modern Optical Engineering: The Design Of Optical Systems, Vol. 4, 754 (McGraw-Hill Professional, New York, NY, US, 2007).
  27. Hellen, E. H. & Axelrod, D. Fluorescence emission at dielectric and metal-film interfaces. J. Opt. Soc. Am. B 4, 337–350 (1987). (10.1364/JOSAB.4.000337) / J. Opt. Soc. Am. B by EH Hellen (1987)
  28. Rabouw, F. T. et al. Non-blinking single-photon emitters in silica. Sci. Rep. 6, 21187 (2016). (10.1038/srep21187) / Sci. Rep. by FT Rabouw (2016)
  29. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edition (Cambridge University Press, Cambridge, UK, 1999).
  30. Den Dekker, A. & Van den Bos, A. Resolution: a survey. J. Opt. Soc. Am. A 14, 547–557 (1997). (10.1364/JOSAA.14.000547)
  31. Beis, K. Structural basis for the mechanism of ABC transporters. Biochem. Soc. Trans. 43, 889–893 (2015). (10.1042/BST20150047) / Biochem. Soc. Trans. by K Beis (2015)
  32. Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557 (2013). (10.1038/nmeth.2448) / Nat. Methods by RPJ Nieuwenhuizen (2013)
  33. Bountra, K. et al. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J. 36, 3062–3079 (2017). (10.15252/embj.201797278) / EMBO J. by K Bountra (2017)
  34. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297 (2006). (10.1038/nature04586) / Nature by PW Rothemund (2006)
  35. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014). (10.1073/pnas.1320506111) / Proc. Natl Acad. Sci. U.S.A. by HG Choudhury (2014)
  36. Mehmood, S. et al. Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD. J. Biol. Chem. 291, 21656–21668 (2016). (10.1074/jbc.M116.732107) / J. Biol. Chem. by S Mehmood (2016)
  37. Romano, M. et al. Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem. Biol. 13, 1598–1609 (2018). (10.1021/acschembio.8b00226) / ACS Chem. Biol. by M Romano (2018)
  38. Strahl, H. & Errington, J. Bacterial membranes: structure, domains, and function. Annu. Rev. Microbiol. 71, 519–538 (2017). (10.1146/annurev-micro-102215-095630) / Annu. Rev. Microbiol. by H Strahl (2017)
  39. Barák, I., Muchová, K., Wilkinson, A. J., O’toole, P. J. & Pavlendová, N. Lipid spirals in Bacillus subtilis and their role in cell division. Mol. Microbiol. 68, 1315–1327 (2008). (10.1111/j.1365-2958.2008.06236.x) / Mol. Microbiol. by I Barák (2008)
  40. Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007). (10.1126/science.1146598) / Science by M Bates (2007)
  41. Mattheyses, A. L., Simon, S. M. & Rappoport, J. Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 123, 3621–3628 (2010). (10.1242/jcs.056218) / J. Cell Sci. by AL Mattheyses (2010)
  42. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981). (10.1083/jcb.89.1.141) / J. Cell Biol. by D Axelrod (1981)
  43. Wee, P. & Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9, 52 (2017). (10.3390/cancers9050052) / Cancers by P Wee (2017)
  44. Sternberg, S. R. Biomedical image processing. Computer 16, 22–34 (1983). (10.1109/MC.1983.1654163) / Computer by SR Sternberg (1983)
  45. Mutch, L. J., Howden, J. D., Jenner, E. P. L., Poulter, N. S. & Rappoport, J. Z. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic 15, 648–664 (2014). (10.1111/tra.12165) / Traffic by LJ Mutch (2014)
  46. Lang, C., Hiscock, M., Dawson, M. & Hartfield, C. Local thickness and composition analysis of TEM lamellae in the FIB. Microelectron. Reliab. 54, 1790–1793 (2014). (10.1016/j.microrel.2014.07.043) / Microelectron. Reliab. by C Lang (2014)
  47. De Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503 (2015). (10.1038/nmeth.3400) / Nat. Methods by P De Boer (2015)
  48. Fitzgerald, J. E., Lu, J. & Schnitzer, M. J. Estimation theoretic measure of resolution for stochastic localization microscopy. Phys. Rev. Lett. 109, 048102 (2012). (10.1103/PhysRevLett.109.048102) / Phys. Rev. Lett. by JE Fitzgerald (2012)
  49. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027 (2011). (10.1038/nmeth.1768) / Nat. Methods by GT Dempsey (2011)
  50. Tessler, L. A. et al. Nanogel surface coatings for improved single-molecule imaging substrates. J. R. Soc. Interface 8, 1400–1408 (2011). (10.1098/rsif.2010.0669) / J. R. Soc. Interface by LA Tessler (2011)
  51. Zanetti-Domingues, L. C., Martin-Fernandez, M. L., Needham, S. R., Rolfe, D. J. & Clarke, D. T. A systematic investigation of differential effects of cell culture substrates on the extent of artifacts in single-molecule tracking. PLoS ONE 7, e45655 (2012). (10.1371/journal.pone.0045655) / PLoS ONE by LC Zanetti-Domingues (2012)
Dates
Type When
Created 6 years, 6 months ago (Feb. 21, 2019, 6:03 a.m.)
Deposited 2 years, 8 months ago (Dec. 17, 2022, 1:49 p.m.)
Indexed 1 day, 14 hours ago (Aug. 23, 2025, 9:09 p.m.)
Issued 6 years, 6 months ago (Feb. 21, 2019)
Published 6 years, 6 months ago (Feb. 21, 2019)
Published Online 6 years, 6 months ago (Feb. 21, 2019)
Funders 1
  1. RCUK | Medical Research Council 10.13039/501100000265 Medical Research Council

    Region: Europe

    gov (National government)

    Labels3
    1. Medical Research Council (United Kingdom)
    2. UK Medical Research Council
    3. MRC
    Awards1
    1. MR/K015591/1

@article{Wang_2019, title={Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution}, volume={2}, ISSN={2399-3642}, url={http://dx.doi.org/10.1038/s42003-019-0317-6}, DOI={10.1038/s42003-019-0317-6}, number={1}, journal={Communications Biology}, publisher={Springer Science and Business Media LLC}, author={Wang, Lin and Bateman, Benji and Zanetti-Domingues, Laura C. and Moores, Amy N. and Astbury, Sam and Spindloe, Christopher and Darrow, Michele C. and Romano, Maria and Needham, Sarah R. and Beis, Konstantinos and Rolfe, Daniel J. and Clarke, David T. and Martin-Fernandez, Marisa L.}, year={2019}, month=feb }