Crossref journal-article
Springer Science and Business Media LLC
Nature Electronics (297)
Bibliography

Chen, H., Xue, X., Liu, C., Fang, J., Wang, Z., Wang, J., Zhang, D. W., Hu, W., & Zhou, P. (2021). Logic gates based on neuristors made from two-dimensional materials. Nature Electronics, 4(6), 399–404.

Authors 9
  1. Huawei Chen (first)
  2. Xiaoyong Xue (additional)
  3. Chunsen Liu (additional)
  4. Jinbei Fang (additional)
  5. Zhen Wang (additional)
  6. Jianlu Wang (additional)
  7. David Wei Zhang (additional)
  8. Weida Hu (additional)
  9. Peng Zhou (additional)
References 43 Referenced 151
  1. Das, S., Dodda, A. & Das, S. A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10, 3450 (2019). (10.1038/s41467-019-11381-9) / Nat. Commun. by S Das (2019)
  2. Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020). (10.1038/s41928-020-00466-9) / Nat. Electron. by D Jayachandran (2020)
  3. Li, X. et al. Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 15, 776–782 (2020). (10.1038/s41565-020-0722-5) / Nat. Nanotechnol. by X Li (2020)
  4. Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020). (10.1126/science.aax6239) / Science by A Gidon (2020)
  5. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018). (10.1038/s41563-017-0001-5) / Nat. Mater. by S Choi (2018)
  6. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019). (10.1038/s41563-019-0291-x) / Nat. Mater. by Q Xia (2019)
  7. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). (10.1038/s41565-020-0655-z) / Nat. Nanotechnol. by A Sebastian (2020)
  8. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019). (10.1126/science.aaw5581) / Science by EJ Fuller (2019)
  9. Huang, P. et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large‐scale circuits. Adv. Mater. 28, 9758–9764 (2016). (10.1002/adma.201602418) / Adv. Mater. by P Huang (2016)
  10. Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020). (10.1038/s41586-020-2735-5) / Nature by S Kumar (2020)
  11. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). (10.1038/s41563-018-0248-5) / Nat. Mater. by X Zhu (2019)
  12. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). (10.1038/s41565-020-0724-3) / Nat. Nanotechnol. by C Liu (2020)
  13. Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). (10.1038/s41586-020-2861-0) / Nature by GM Marega (2020)
  14. Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018). (10.1038/s41928-018-0118-9) / Nat. Electron. by Y Shi (2018)
  15. Chen, H. et al. Time‐tailoring van der Waals heterostructures for human memory system programming. Adv. Sci. 6, 1901072 (2019). (10.1002/advs.201901072) / Adv. Sci. by H Chen (2019)
  16. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). (10.1038/ncomms14948) / Nat. Commun. by S Wachter (2017)
  17. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). (10.1038/s41586-019-1013-x) / Nature by Y Liu (2019)
  18. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). (10.1038/s41586-020-2038-x) / Nature by L Mennel (2020)
  19. Yu, L. et al. Design, modeling and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016). (10.1021/acs.nanolett.6b02739) / Nano Lett. by L Yu (2016)
  20. Dathbun, A. et al. Large-area CVD-grown sub-2-V ReS2 transistors and logic gates. Nano Lett. 17, 2999–3005 (2017). (10.1021/acs.nanolett.7b00315) / Nano Lett. by A Dathbun (2017)
  21. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). (10.1038/s41586-018-0574-4) / Nature by Z Lin (2018)
  22. Resta, G. V. et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018). (10.1021/acsnano.8b02739) / ACS Nano by GV Resta (2018)
  23. Wu, P., Reis, D., Hu, X. S. & Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2021). (10.1038/s41928-020-00511-7) / Nat. Electron. by P Wu (2021)
  24. Lee, S.-J. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630–637 (2020). (10.1038/s41928-020-00472-x) / Nat. Electron. by S-J Lee (2020)
  25. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019). (10.1038/s41565-019-0462-6) / Nat. Nanotechnol. by C Liu (2019)
  26. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020). (10.1038/s41928-020-0433-9) / Nat. Electron. by C Pan (2020)
  27. Cheng, R. et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 1, 356–361 (2018). (10.1038/s41928-018-0086-0) / Nat. Electron. by R Cheng (2018)
  28. Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett. 18, 3682–3687 (2018). (10.1021/acs.nanolett.8b00816) / Nano Lett. by M Si (2018)
  29. Movva, H. C. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015). (10.1021/acsnano.5b04611) / ACS Nano by HC Movva (2015)
  30. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nat. Nanotechnol. by L Li (2014)
  31. Lee, Y. T. et al. Nonvolatile charge injection memory based on black phosphorous 2D nanosheets for charge trapping and active channel layers. Adv. Funct. Mater. 26, 5701–5707 (2016). (10.1002/adfm.201602113) / Adv. Funct. Mater. by YT Lee (2016)
  32. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotechnol. by B Radisavljevic (2011)
  33. Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018). (10.1038/s41565-017-0010-1) / Nat. Nanotechnol. by M Si (2018)
  34. Pang, C. S. et al. First demonstration of WSe2 CMOS inverter with modulable noise margin by electrostatic doping. In Proc. 2018 76th Device Research Conference (DRC) 1–2 (IEEE, 2018). (10.1109/DRC.2018.8442258)
  35. Liu, Yuan et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). (10.1038/s41586-018-0129-8) / Nature by Yuan Liu (2018)
  36. Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10-nm channel length. Nano Lett. 16, 7798–7806 (2016). (10.1021/acs.nanolett.6b03999) / Nano Lett. by A Nourbakhsh (2016)
  37. Cheng, C. C. et al. First demonstration of 40-nm channel length top-gate WS2 pFET using channel area-selective CVD growth directly on SiOx/Si substrate. In Proc. 2019 Symposium on VLSI Technology T244–T245 (IEEE, 2019). (10.23919/VLSIT.2019.8776498)
  38. Paletti, P. et al. Electric double layer Esaki tunnel junction in a 40-nm-length, WSe2 channel grown by molecular beam epitaxy on Al203. In Proc. 2018 48th European Solid-State Device Research Conference (ESSDERC) 110–113 (IEEE, 2018). (10.1109/ESSDERC.2018.8486874)
  39. Xiang, L. et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1, 237–245 (2018). (10.1038/s41928-018-0056-6) / Nat. Electron. by L Xiang (2018)
  40. Zhang, H. et al. High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 12, 2773–2779 (2018). (10.1021/acsnano.7b09145) / ACS Nano by H Zhang (2018)
  41. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012). (10.1126/science.1220527) / Science by H Yang (2012)
  42. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). (10.1038/s41586-020-1942-4) / Nature by P Yao (2020)
  43. Lin, X., Zhao, C. & Pan, W. Towards accurate binary convolutional neural network. In Advances in Neural Information Processing Systems 345–353 (NIPS, 2017).
Dates
Type When
Created 4 years, 2 months ago (June 7, 2021, 12:14 p.m.)
Deposited 2 years, 8 months ago (Dec. 3, 2022, 2:06 p.m.)
Indexed 2 weeks, 5 days ago (Aug. 6, 2025, 8:52 a.m.)
Issued 4 years, 2 months ago (June 7, 2021)
Published 4 years, 2 months ago (June 7, 2021)
Published Online 4 years, 2 months ago (June 7, 2021)
Funders 0

None

@article{Chen_2021, title={Logic gates based on neuristors made from two-dimensional materials}, volume={4}, ISSN={2520-1131}, url={http://dx.doi.org/10.1038/s41928-021-00591-z}, DOI={10.1038/s41928-021-00591-z}, number={6}, journal={Nature Electronics}, publisher={Springer Science and Business Media LLC}, author={Chen, Huawei and Xue, Xiaoyong and Liu, Chunsen and Fang, Jinbei and Wang, Zhen and Wang, Jianlu and Zhang, David Wei and Hu, Weida and Zhou, Peng}, year={2021}, month=jun, pages={399–404} }