Bibliography
Pan, C., Wang, C.-Y., Liang, S.-J., Wang, Y., Cao, T., Wang, P., Wang, C., Wang, S., Cheng, B., Gao, A., Liu, E., Watanabe, K., Taniguchi, T., & Miao, F. (2020). Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nature Electronics, 3(7), 383â390.
Authors
14
- Chen Pan (first)
- Chen-Yu Wang (additional)
- Shi-Jun Liang (additional)
- Yu Wang (additional)
- Tianjun Cao (additional)
- Pengfei Wang (additional)
- Cong Wang (additional)
- Shuang Wang (additional)
- Bin Cheng (additional)
- Anyuan Gao (additional)
- Erfu Liu (additional)
- Kenji Watanabe (additional)
- Takashi Taniguchi (additional)
- Feng Miao (additional)
References
55
Referenced
314
-
Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018).
(
10.1126/science.aap9195
) / Science by C Qiu (2018) -
Li, D. et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 12, 901–906 (2017).
(
10.1038/nnano.2017.104
) / Nat. Nanotechnol. by D Li (2017) -
Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017).
(
10.1038/nnano.2017.208
) / Nat. Nanotechnol. by M Huang (2017) -
Cheng, R. et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 1, 356–361 (2018).
(
10.1038/s41928-018-0086-0
) / Nat. Electron. by R Cheng (2018) -
Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).
(
10.1126/science.1220527
) / Science by H Yang (2012) -
Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).
(
10.1038/s41565-018-0102-6
) / Nat. Nanotechnol. by C Liu (2018) -
Resta, G. V. et al. Towards high-performance polarity-controllable FETs with 2D materials. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) 637–641 (IEEE, 2018).
(
10.23919/DATE.2018.8342088
) -
Pang, C. & Chen, Z. First demonstration of WSe2 CMOS inverter with modulable noise margin by electrostatic doping. In 2018 76th Device Research Conference (DRC) 1–2 (IEEE, 2018).
(
10.1109/DRC.2018.8442258
) - Pang, C., Thakuria, N., Gupta, S. K. & Chen, Z. First demonstration of WSe2 based CMOS-SRAM. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 22.2.1–22.2.4 (IEEE, 2018).
-
Resta, G. V. et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018).
(
10.1021/acsnano.8b02739
) / ACS Nano by GV Resta (2018) -
Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).
(
10.1038/s41565-019-0462-6
) / Nat. Nanotechnol. by C Liu (2019) - International Technology Roadmap for Semiconductors 2.0 2015 Edition—Beyond CMOS (IEEE, 2018) https://www.semiconductors.org/wp-content/uploads/2018/06/6_2015-ITRS-2.0-Beyond-CMOS.pdf
-
Orji, N. G. et al. Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018).
(
10.1038/s41928-018-0150-9
) / Nat. Electron. by NG Orji (2018) -
Gaillardon, P., Tang, X., Kim, G. & De Micheli, G. A novel FPGA architecture based on ultrafine grain reconfigurable logic cells. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23, 2187–2197 (2015).
(
10.1109/TVLSI.2014.2359385
) / IEEE Trans. Very Large Scale Integr. VLSI Syst. by P Gaillardon (2015) -
Trommer, J., Heinzig, A., Slesazeck, S., Mikolajick, T. & Weber, W. M. Elementary aspects for circuit implementation of reconfigurable nanowire transistors. IEEE Electron Device Lett. 35, 141–143 (2014).
(
10.1109/LED.2013.2290555
) / IEEE Electron Device Lett. by J Trommer (2014) -
Liu, Y. et al. Ambipolar barristors for reconfigurable logic circuits. Nano Lett. 17, 1448–1454 (2017).
(
10.1021/acs.nanolett.6b04417
) / Nano Lett. by Y Liu (2017) -
Raitza, M. et al. Exploiting transistor-level reconfiguration to optimize combinational circuits. In Proc. Conference on Design, Automation & Test in Europe 338–343 (European Design and Automation Association, 2017).
(
10.23919/DATE.2017.7927013
) -
Ben-Jamaa, M. H., Mohanram, K. & De Micheli, G. An efficient gate library for ambipolar CNTFET logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30, 242–255 (2011).
(
10.1109/TCAD.2010.2085250
) / IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. by MH Ben-Jamaa (2011) -
Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).
(
10.1038/nature09749
) / Nature by H Yan (2011) -
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
(
10.1038/natrevmats.2016.52
) / Nat. Rev. Mater. by M Chhowalla (2016) -
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).
(
10.1021/nn500064s
) / ACS Nano by D Jariwala (2014) -
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
(
10.1038/natrevmats.2016.42
) / Nat. Rev. Mater. by Y Liu (2016) -
Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).
(
10.1038/nmat3518
) / Nat. Mater. by WJ Yu (2013) -
Wang, Y. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 12, 9513–9520 (2018).
(
10.1021/acsnano.8b04885
) / ACS Nano by Y Wang (2018) -
Lee, C. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
(
10.1038/nnano.2014.150
) / Nat. Nanotechnol. by C Lee (2014) -
Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).
(
10.1038/s41928-018-0021-4
) / Nat. Electron. by M Wang (2018) -
Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).
(
10.1038/nnano.2014.14
) / Nat. Nanotechnol. by A Pospischil (2014) -
Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).
(
10.1038/nnano.2014.25
) / Nat. Nanotechnol. by BW Baugher (2014) -
Liu, T. et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 30, 1804470 (2018).
(
10.1002/adma.201804470
) / Adv. Mater. by T Liu (2018) -
Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).
(
10.1038/nnano.2014.26
) / Nat. Nanotechnol. by JS Ross (2014) -
Das, S. & Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103, 103501 (2013).
(
10.1063/1.4820408
) / Appl. Phys. Lett. by S Das (2013) -
Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).
(
10.1021/nl304777e
) / Nano Lett. by W Liu (2013) -
Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).
(
10.1021/nl301702r
) / Nano Lett. by H Fang (2012) -
Allain, A. & Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 8, 7180–7185 (2014).
(
10.1021/nn5021538
) / ACS Nano by A Allain (2014) -
Yu, L. et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15, 4928–4934 (2015).
(
10.1021/acs.nanolett.5b00668
) / Nano Lett. by L Yu (2015) -
Pu, J. et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).
(
10.1002/adma.201503872
) / Adv. Mater. by J Pu (2016) -
Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).
(
10.1021/acs.nanolett.6b02739
) / Nano Lett. by L Yu (2016) -
Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).
(
10.1038/ncomms14948
) / Nat. Commun. by S Wachter (2017) -
Dathbun, A. et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17, 2999–3005 (2017).
(
10.1021/acs.nanolett.7b00315
) / Nano Lett. by A Dathbun (2017) -
Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
(
10.1021/nl302015v
) / Nano Lett. by H Wang (2012) -
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
(
10.1038/nature14441
) / Nature by M Prezioso (2015) -
Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).
(
10.1038/nnano.2016.70
) / Nat. Nanotechnol. by T Tuma (2016) -
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
(
10.1021/nl904092h
) / Nano Lett. by SH Jo (2010) -
Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2011).
(
10.1021/nl201040y
) / Nano Lett. by D Kuzum (2011) -
Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).
(
10.1038/nmat4756
) / Nat. Mater. by Z Wang (2017) -
Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
(
10.1038/s41928-018-0118-9
) / Nat. Electron. by Y Shi (2018) -
Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).
(
10.1038/nature25747
) / Nature by VK Sangwan (2018) -
Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).
(
10.1038/s41563-018-0248-5
) / Nat. Mater. by X Zhu (2019) -
Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).
(
10.1002/adma.201800195
) / Adv. Mater. by J Zhu (2018) - Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). / Nat. Commun. by LQ Zhu (2014)
-
Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).
(
10.1002/adma.201600166
) / Adv. Mater. by H Tian (2016) -
Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).
(
10.1038/s41928-018-0023-2
) / Nat. Electron. by Z Wang (2018) -
Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006).
(
10.1109/TNN.2005.860850
) / IEEE Trans. Neural Netw. by G Indiveri (2006) -
Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).
(
10.1021/acsnano.7b03033
) / ACS Nano by H Tian (2017) -
Pan, C. et al. Analog circuit applications based on ambipolar graphene/MoTe2 vertical transistors. Adv. Electron. Mater. 4, 1700662 (2018).
(
10.1002/aelm.201700662
) / Adv. Electron. Mater. by C Pan (2018)
Dates
Type | When |
---|---|
Created | 5 years, 1 month ago (June 29, 2020, 12:04 p.m.) |
Deposited | 2 years, 8 months ago (Dec. 6, 2022, 10:12 p.m.) |
Indexed | 1 hour, 1 minute ago (Aug. 29, 2025, 4:38 a.m.) |
Issued | 5 years, 2 months ago (June 29, 2020) |
Published | 5 years, 2 months ago (June 29, 2020) |
Published Online | 5 years, 2 months ago (June 29, 2020) |
Funders
4
National Natural Science Foundation of China
10.13039/501100001809
Region: Asia
gov (National government)
Labels
11
- Chinese National Science Foundation
- Natural Science Foundation of China
- National Science Foundation of China
- NNSF of China
- NSF of China
- 国家自然科学基金委员会
- National Nature Science Foundation of China
- Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
- NSFC
- NNSF
- NNSFC
Awards
2
- 61921005
- 61974176
Natural Science Foundation of Jiangsu Province
10.13039/501100004608
Region: Asia
gov (Local government)
Labels
3
- Jiangsu Provincial Natural Science Foundation
- Jiangsu Province Natural Science Foundation
- Jiangsu Natural Science Foundation
Awards
1
- BK20180330
Elemental Strategy Initiative conducted by the MEXT, Japan, A3 Foresight by JSPS and the CREST (JPMJCR15F3), JST.
Collaborative Innovation Center of Advanced Microstructures;
10.13039/501100016018
Collaborative Innovation Center of Advanced MicrostructuresRegion: Asia
gov (Research institutes and centers)
Labels
3
- The Collaborative Innovation Center of Advanced Microstructures
- 南京大学先进微结构协同创新中心
- CICAM
@article{Pan_2020, title={Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions}, volume={3}, ISSN={2520-1131}, url={http://dx.doi.org/10.1038/s41928-020-0433-9}, DOI={10.1038/s41928-020-0433-9}, number={7}, journal={Nature Electronics}, publisher={Springer Science and Business Media LLC}, author={Pan, Chen and Wang, Chen-Yu and Liang, Shi-Jun and Wang, Yu and Cao, Tianjun and Wang, Pengfei and Wang, Cong and Wang, Shuang and Cheng, Bin and Gao, Anyuan and Liu, Erfu and Watanabe, Kenji and Taniguchi, Takashi and Miao, Feng}, year={2020}, month=jun, pages={383–390} }