Crossref journal-article
Springer Science and Business Media LLC
Nature Electronics (297)
Bibliography

Xiang, L., Zhang, H., Dong, G., Zhong, D., Han, J., Liang, X., Zhang, Z., Peng, L.-M., & Hu, Y. (2018). Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 1(4), 237–245.

Authors 9
  1. Li Xiang (first)
  2. Heng Zhang (additional)
  3. Guodong Dong (additional)
  4. Donglai Zhong (additional)
  5. Jie Han (additional)
  6. Xuelei Liang (additional)
  7. Zhiyong Zhang (additional)
  8. Lian-Mao Peng (additional)
  9. Youfan Hu (additional)
References 46 Referenced 99
  1. Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). (10.1038/ncomms2832) / Nat. Commun. by G Schwartz (2013)
  2. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017). (10.1038/s41551-017-0038) / Nat. Biomed. Eng. by H Fang (2017)
  3. Reeder, J. et al. Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26, 4967–4973 (2014). (10.1002/adma.201400420) / Adv. Mater. by J Reeder (2014)
  4. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015). (10.1038/nmat4289) / Nat. Mater. by C Dagdeviren (2015)
  5. Webb, R. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013). (10.1038/nmat3755) / Nat. Mater. by R Webb (2013)
  6. Kang, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016). (10.1038/nature16492) / Nature by S Kang (2016)
  7. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11, 566–572 (2016). (10.1038/nnano.2016.38) / Nat. Nanotech. by H Lee (2016)
  8. Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). (10.1038/ncomms6747) / Nat. Commun. by J Kim (2014)
  9. Kim, D. et al. Epidermal electronics. Science 333, 838–843 (2011). (10.1126/science.1206157) / Science by D Kim (2011)
  10. Kim, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010). (10.1038/nmat2745) / Nat. Mater. by D Kim (2010)
  11. Yu, K. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016). (10.1038/nmat4624) / Nat. Mater. by K Yu (2016)
  12. Kim, S. et al. Stretchable and transparent biointerface using cell-sheet-graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv. Funct. Mater. 26, 3207–3217 (2016). (10.1002/adfm.201504578) / Adv. Funct. Mater. by S Kim (2016)
  13. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011). (10.1038/nn.2973) / Nat. Neurosci. by J Viventi (2011)
  14. Lee, S. et al. A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat. Commun. 5, 5898 (2014). (10.1038/ncomms6898) / Nat. Commun. by S Lee (2014)
  15. Park, S. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015). (10.1038/nbt.3415) / Nat. Biotechnol. by S Park (2015)
  16. Hwang, S. et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 23, 4087–4093 (2013). (10.1002/adfm.201300127) / Adv. Funct. Mater. by S Hwang (2013)
  17. Wang, C., Zhang, J. & Zhou, C. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4, 7123–7132 (2010). (10.1021/nn1021378) / ACS Nano by C Wang (2010)
  18. Kang, S. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotech. 2, 230–236 (2007). (10.1038/nnano.2007.77) / Nat. Nanotech. by S Kang (2007)
  19. Wang, C. et al. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12, 1527–1533 (2012). (10.1021/nl2043375) / Nano Lett. by C Wang (2012)
  20. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735–1735 (2006). (10.1126/science.1122797) / Science by Z Chen (2006)
  21. Sun, D. et al. Mouldable all-carbon integrated circuits. Nat. Commun. 4, 2302 (2013). / Nat. Commun. by D Sun (2013)
  22. Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014). / Nat. Commun. by H Chen (2014)
  23. Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011). (10.1038/nnano.2011.1) / Nat. Nanotech. by D Sun (2011)
  24. Ding, L. et al. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012). (10.1038/ncomms1682) / Nat. Commun. by L Ding (2012)
  25. Chen, B. et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 16, 5120–5128 (2016). (10.1021/acs.nanolett.6b02046) / Nano Lett. by B Chen (2016)
  26. Yang, Y., Ding, L., Han, J., Zhang, Z. & Peng, L. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11, 4124–4132 (2017). (10.1021/acsnano.7b00861) / ACS Nano by Y Yang (2017)
  27. Shulaker, M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013). (10.1038/nature12502) / Nature by M Shulaker (2013)
  28. Franklin, A. et al. Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6, 1109–1115 (2012). (10.1021/nn203516z) / ACS Nano by A Franklin (2012)
  29. Lee, C., Kim, D. & Zheng, X. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett. 11, 3435–3439 (2011). (10.1021/nl201901z) / Nano Lett. by C Lee (2011)
  30. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009). (10.1021/nl902623y) / Nano Lett. by X Li (2009)
  31. Hwang, S. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014). (10.1002/adma.201306050) / Adv. Mater. by S Hwang (2014)
  32. Publications of International Technology Roadmap for Semiconductors (ITRS, 2013); http://www.itrs2.net
  33. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008). (10.1038/nature07110) / Nature by Q Cao (2008)
  34. Cao, Q., Xia, M., Shim, M. & Rogers, J. Bilayer organic–inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv. Funct. Mater. 16, 2355–2362 (2006). (10.1002/adfm.200600539) / Adv. Funct. Mater. by Q Cao (2006)
  35. Yu, W. et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 11, 1344–1350 (2011). (10.1021/nl104488z) / Nano Lett. by W Yu (2011)
  36. Chae, S. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). (10.1038/nmat3572) / Nat. Mater. by S Chae (2013)
  37. Ha, M. et al. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube Inks. ACS Nano 4, 4388–4395 (2010). (10.1021/nn100966s) / ACS Nano by M Ha (2010)
  38. Geier, M. et al. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett. 13, 4810–4814 (2013). (10.1021/nl402478p) / Nano Lett. by M Geier (2013)
  39. Sangwan, V. et al. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6, 7480–7488 (2012). (10.1021/nn302768h) / ACS Nano by V Sangwan (2012)
  40. Choi, S. et al. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 7, 798–803 (2013). (10.1021/nn305277d) / ACS Nano by S Choi (2013)
  41. Kim, S., Kim, S., Park, J., Ju, S. & Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 4, 2994–2998 (2010). (10.1021/nn1006094) / ACS Nano by S Kim (2010)
  42. Lin, Y., Appenzeller, J. & Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 4, 947–950 (2004). (10.1021/nl049745j) / Nano Lett. by Y Lin (2004)
  43. Qiu, C. et al. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9, 969–977 (2015). (10.1021/nn506806b) / ACS Nano by C Qiu (2015)
  44. Zhao, Y. et al. Three-dimensional flexible complementary metal–oxide–semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 10, 2193–2202 (2016). (10.1021/acsnano.5b06726) / ACS Nano by Y Zhao (2016)
  45. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013). (10.1021/nl3038773) / Nano Lett. by M Ha (2013)
  46. Honda, W., Arie, T., Akita, S. & Takei, K. Bendable CMOS digital and analog circuits monolithically integrated with a temperature sensor. Adv. Mater. Tech. 1, 1600058 (2016). (10.1002/admt.201600058) / Adv. Mater. Tech. by W Honda (2016)
Dates
Type When
Created 7 years, 4 months ago (April 11, 2018, 4:57 a.m.)
Deposited 2 years, 8 months ago (Dec. 21, 2022, 7:36 a.m.)
Indexed 3 weeks ago (Aug. 6, 2025, 9:41 a.m.)
Issued 7 years, 4 months ago (April 17, 2018)
Published 7 years, 4 months ago (April 17, 2018)
Published Online 7 years, 4 months ago (April 17, 2018)
Funders 0

None

@article{Xiang_2018, title={Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces}, volume={1}, ISSN={2520-1131}, url={http://dx.doi.org/10.1038/s41928-018-0056-6}, DOI={10.1038/s41928-018-0056-6}, number={4}, journal={Nature Electronics}, publisher={Springer Science and Business Media LLC}, author={Xiang, Li and Zhang, Heng and Dong, Guodong and Zhong, Donglai and Han, Jie and Liang, Xuelei and Zhang, Zhiyong and Peng, Lian-Mao and Hu, Youfan}, year={2018}, month=apr, pages={237–245} }