Crossref
journal-article
Springer Science and Business Media LLC
Nature Electronics (297)
Authors
9
- Li Xiang (first)
- Heng Zhang (additional)
- Guodong Dong (additional)
- Donglai Zhong (additional)
- Jie Han (additional)
- Xuelei Liang (additional)
- Zhiyong Zhang (additional)
- Lian-Mao Peng (additional)
- Youfan Hu (additional)
References
46
Referenced
99
-
Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).
(
10.1038/ncomms2832
) / Nat. Commun. by G Schwartz (2013) -
Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).
(
10.1038/s41551-017-0038
) / Nat. Biomed. Eng. by H Fang (2017) -
Reeder, J. et al. Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26, 4967–4973 (2014).
(
10.1002/adma.201400420
) / Adv. Mater. by J Reeder (2014) -
Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).
(
10.1038/nmat4289
) / Nat. Mater. by C Dagdeviren (2015) -
Webb, R. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).
(
10.1038/nmat3755
) / Nat. Mater. by R Webb (2013) -
Kang, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).
(
10.1038/nature16492
) / Nature by S Kang (2016) -
Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11, 566–572 (2016).
(
10.1038/nnano.2016.38
) / Nat. Nanotech. by H Lee (2016) -
Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).
(
10.1038/ncomms6747
) / Nat. Commun. by J Kim (2014) -
Kim, D. et al. Epidermal electronics. Science 333, 838–843 (2011).
(
10.1126/science.1206157
) / Science by D Kim (2011) -
Kim, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).
(
10.1038/nmat2745
) / Nat. Mater. by D Kim (2010) -
Yu, K. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).
(
10.1038/nmat4624
) / Nat. Mater. by K Yu (2016) -
Kim, S. et al. Stretchable and transparent biointerface using cell-sheet-graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv. Funct. Mater. 26, 3207–3217 (2016).
(
10.1002/adfm.201504578
) / Adv. Funct. Mater. by S Kim (2016) -
Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).
(
10.1038/nn.2973
) / Nat. Neurosci. by J Viventi (2011) -
Lee, S. et al. A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat. Commun. 5, 5898 (2014).
(
10.1038/ncomms6898
) / Nat. Commun. by S Lee (2014) -
Park, S. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).
(
10.1038/nbt.3415
) / Nat. Biotechnol. by S Park (2015) -
Hwang, S. et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 23, 4087–4093 (2013).
(
10.1002/adfm.201300127
) / Adv. Funct. Mater. by S Hwang (2013) -
Wang, C., Zhang, J. & Zhou, C. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4, 7123–7132 (2010).
(
10.1021/nn1021378
) / ACS Nano by C Wang (2010) -
Kang, S. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotech. 2, 230–236 (2007).
(
10.1038/nnano.2007.77
) / Nat. Nanotech. by S Kang (2007) -
Wang, C. et al. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12, 1527–1533 (2012).
(
10.1021/nl2043375
) / Nano Lett. by C Wang (2012) -
Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735–1735 (2006).
(
10.1126/science.1122797
) / Science by Z Chen (2006) - Sun, D. et al. Mouldable all-carbon integrated circuits. Nat. Commun. 4, 2302 (2013). / Nat. Commun. by D Sun (2013)
- Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014). / Nat. Commun. by H Chen (2014)
-
Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011).
(
10.1038/nnano.2011.1
) / Nat. Nanotech. by D Sun (2011) -
Ding, L. et al. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012).
(
10.1038/ncomms1682
) / Nat. Commun. by L Ding (2012) -
Chen, B. et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 16, 5120–5128 (2016).
(
10.1021/acs.nanolett.6b02046
) / Nano Lett. by B Chen (2016) -
Yang, Y., Ding, L., Han, J., Zhang, Z. & Peng, L. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11, 4124–4132 (2017).
(
10.1021/acsnano.7b00861
) / ACS Nano by Y Yang (2017) -
Shulaker, M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).
(
10.1038/nature12502
) / Nature by M Shulaker (2013) -
Franklin, A. et al. Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6, 1109–1115 (2012).
(
10.1021/nn203516z
) / ACS Nano by A Franklin (2012) -
Lee, C., Kim, D. & Zheng, X. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett. 11, 3435–3439 (2011).
(
10.1021/nl201901z
) / Nano Lett. by C Lee (2011) -
Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).
(
10.1021/nl902623y
) / Nano Lett. by X Li (2009) -
Hwang, S. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014).
(
10.1002/adma.201306050
) / Adv. Mater. by S Hwang (2014) - Publications of International Technology Roadmap for Semiconductors (ITRS, 2013); http://www.itrs2.net
-
Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).
(
10.1038/nature07110
) / Nature by Q Cao (2008) -
Cao, Q., Xia, M., Shim, M. & Rogers, J. Bilayer organic–inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv. Funct. Mater. 16, 2355–2362 (2006).
(
10.1002/adfm.200600539
) / Adv. Funct. Mater. by Q Cao (2006) -
Yu, W. et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 11, 1344–1350 (2011).
(
10.1021/nl104488z
) / Nano Lett. by W Yu (2011) -
Chae, S. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013).
(
10.1038/nmat3572
) / Nat. Mater. by S Chae (2013) -
Ha, M. et al. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube Inks. ACS Nano 4, 4388–4395 (2010).
(
10.1021/nn100966s
) / ACS Nano by M Ha (2010) -
Geier, M. et al. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett. 13, 4810–4814 (2013).
(
10.1021/nl402478p
) / Nano Lett. by M Geier (2013) -
Sangwan, V. et al. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6, 7480–7488 (2012).
(
10.1021/nn302768h
) / ACS Nano by V Sangwan (2012) -
Choi, S. et al. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 7, 798–803 (2013).
(
10.1021/nn305277d
) / ACS Nano by S Choi (2013) -
Kim, S., Kim, S., Park, J., Ju, S. & Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 4, 2994–2998 (2010).
(
10.1021/nn1006094
) / ACS Nano by S Kim (2010) -
Lin, Y., Appenzeller, J. & Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 4, 947–950 (2004).
(
10.1021/nl049745j
) / Nano Lett. by Y Lin (2004) -
Qiu, C. et al. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9, 969–977 (2015).
(
10.1021/nn506806b
) / ACS Nano by C Qiu (2015) -
Zhao, Y. et al. Three-dimensional flexible complementary metal–oxide–semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 10, 2193–2202 (2016).
(
10.1021/acsnano.5b06726
) / ACS Nano by Y Zhao (2016) -
Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).
(
10.1021/nl3038773
) / Nano Lett. by M Ha (2013) -
Honda, W., Arie, T., Akita, S. & Takei, K. Bendable CMOS digital and analog circuits monolithically integrated with a temperature sensor. Adv. Mater. Tech. 1, 1600058 (2016).
(
10.1002/admt.201600058
) / Adv. Mater. Tech. by W Honda (2016)
Dates
Type | When |
---|---|
Created | 7 years, 4 months ago (April 11, 2018, 4:57 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 21, 2022, 7:36 a.m.) |
Indexed | 3 weeks ago (Aug. 6, 2025, 9:41 a.m.) |
Issued | 7 years, 4 months ago (April 17, 2018) |
Published | 7 years, 4 months ago (April 17, 2018) |
Published Online | 7 years, 4 months ago (April 17, 2018) |
@article{Xiang_2018, title={Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces}, volume={1}, ISSN={2520-1131}, url={http://dx.doi.org/10.1038/s41928-018-0056-6}, DOI={10.1038/s41928-018-0056-6}, number={4}, journal={Nature Electronics}, publisher={Springer Science and Business Media LLC}, author={Xiang, Li and Zhang, Heng and Dong, Guodong and Zhong, Donglai and Han, Jie and Liang, Xuelei and Zhang, Zhiyong and Peng, Lian-Mao and Hu, Youfan}, year={2018}, month=apr, pages={237–245} }