Crossref journal-article
Springer Science and Business Media LLC
npj 2D Materials and Applications (297)
Abstract

AbstractHexagonal boron nitride (h-BN) and semiconducting transition metal dichalcogenides (TMDs) promise greatly improved electrostatic control in future scaled electronic devices. To quantify the prospects of these materials in devices, we calculate the out-of-plane and in-plane dielectric constant from first principles for TMDs in trigonal prismatic and octahedral coordination, as well as for h-BN, with a thickness ranging from monolayer and bilayer to bulk. Both the ionic and electronic contribution to the dielectric response are computed. Our calculations show that the out-of-plane dielectric response for the transition-metal dichalcogenides is dominated by its electronic component and that the dielectric constant increases with increasing chalcogen atomic number. Overall, the out-of-plane dielectric constant of the TMDs and h-BN increases by less than 15% as the number of layers is increased from monolayer to bulk, while the in-plane component remains unchanged. Our computations also reveal that for octahedrally coordinated TMDs the ionic (static) contribution to the dielectric response is very high (4.5 times the electronic contribution) in the in-plane direction. This indicates that semiconducting TMDs in the tetragonal phase will suffer from excessive polar-optical scattering thereby deteriorating their electronic transport properties.

Bibliography

Laturia, A., Van de Put, M. L., & Vandenberghe, W. G. (2018). Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. Npj 2D Materials and Applications, 2(1).

Authors 3
  1. Akash Laturia (first)
  2. Maarten L. Van de Put (additional)
  3. William G. Vandenberghe (additional)
References 39 Referenced 738
  1. Novoselov, K. et al. Electronic properties of graphene. Phys. Status Solidi (b) 244, 4106–4111 (2007). (10.1002/pssb.200776208) / Phys. Status Solidi (b) by K Novoselov (2007)
  2. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). (10.1021/nn400280c) / ACS Nano by SZ Butler (2013)
  3. Ma, R. & Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 48, 136–143 (2014). (10.1021/ar500311w) / Acc. Chem. Res. by R Ma (2014)
  4. Zhao, J. et al. Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 83, 24–151 (2016). (10.1016/j.pmatsci.2016.04.001) / Prog. Mater. Sci. by J Zhao (2016)
  5. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). (10.1021/nn501226z) / ACS Nano by H Liu (2014)
  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nano by QH Wang (2012)
  7. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). (10.1126/science.1256815) / Science by X Qian (2014)
  8. Wilson, J. & Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969). (10.1080/00018736900101307) / Adv. Phys. by J Wilson (1969)
  9. Kang, M. et al. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017). (10.1021/acs.nanolett.6b04775) / Nano Lett. by M Kang (2017)
  10. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). (10.1016/j.mattod.2016.10.002)
  11. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano 8, 1102–1120 (2014). (10.1021/nn500064s) / ACS nano by D Jariwala (2014)
  12. Fischetti, M. V. & Vandenberghe, W. G. Mermin-wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry. Phys. Rev. B 93, 155413 (2016). (10.1103/PhysRevB.93.155413) / Phys. Rev. B by MV Fischetti (2016)
  13. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer mos2. Nat. Nanotechnol. 8, 497–501 (2013). (10.1038/nnano.2013.100) / Nat. Nanotechnol. by O Lopez-Sanchez (2013)
  14. Negreira, A. S., Vandenberghe, W. G. & Fischetti, M. V. Ab initio study of the electronic properties and thermodynamic stability of supported and functionalized two-dimensional sn films. Phys. Rev. B 91, 245103 (2015). (10.1103/PhysRevB.91.245103) / Phys. Rev. B by AS Negreira (2015)
  15. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). (10.1021/nl0731872) / Nano Lett. by AA Balandin (2008)
  16. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004). (10.1038/nmat1134) / Nat. Mater. by K Watanabe (2004)
  17. Chan, M. Y. et al. Suppression of thermally activated carrier transport in atomically thin mos 2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013). (10.1039/c3nr03220e) / Nanoscale by MY Chan (2013)
  18. Withers, F., Bointon, T. H., Hudson, D. C., Craciun, M. F. & Russo, S. Electron transport of ws2 transistors in a hexagonal boron nitride dielectric environment. Sci. Rep. 4 (2014). (10.1038/srep04967)
  19. Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014). (10.1021/nl5009037) / Nano Lett. by S Das (2014)
  20. Hüser, F., Olsen, T. & Thygesen, K. S. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: monolayer mos 2. Phys. Rev. B 88, 245309 (2013). (10.1103/PhysRevB.88.245309) / Phys. Rev. B by F Hüser (2013)
  21. Latini, S., Olsen, T. & Thygesen, K. S. Excitons in van der waals heterostructures: the important role of dielectric screening. Phys. Rev. B 92, 245123 (2015). (10.1103/PhysRevB.92.245123) / Phys. Rev. B by S Latini (2015)
  22. Andersen, K., Latini, S. & Thygesen, K. S. Dielectric genome of van der waals heterostructures. Nano Lett. 15, 4616–4621 (2015). (10.1021/acs.nanolett.5b01251) / Nano Lett. by K Andersen (2015)
  23. Yu, E. K., Stewart, D. A. & Tiwari, S. Ab initio. Phys. Rev. B 77, 195406 (2008). (10.1103/PhysRevB.77.195406) / Phys. Rev. B by EK Yu (2008)
  24. Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar mos2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013). (10.1063/1.4789365) / Appl. Phys. Lett. by W Bao (2013)
  25. March, N. & Tosi, M. Polymers, Liquid Crystals, and Low-dimensional Solids. (Plenum Press, New York, USA, 1984). (10.1007/978-1-4613-2367-9) / Polymers, Liquid Crystals, and Low-dimensional Solids by N March (1984)
  26. Kumar, P., Chauhan, Y. S., Agarwal, A. & Bhowmick, S. Thickness and stacking dependent polarizability and dielectric constant of graphene–hexagonal boron nitride composite stacks. J. Phys. Chem. C 120, 17620–17626 (2016). (10.1021/acs.jpcc.6b05805) / J. Phys. Chem. C by P Kumar (2016)
  27. Santos, E. J. & Kaxiras, E. Electrically driven tuning of the dielectric constant in mos2 layers. ACS Nano 7, 10741–10746 (2013). (10.1021/nn403738b) / ACS Nano by EJ Santos (2013)
  28. Madelung, O. Semiconductors-basic data. (Springer Science and Business Media, Berlin, Germany, 2004). (10.1007/978-3-642-18865-7) / Semiconductors-basic data by O Madelung (2004)
  29. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  32. Grimme, S. Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). (10.1002/jcc.20495) / J. Comput. Chem. by S Grimme (2006)
  33. Wu, R. J., Odlyzko, M. L. & Mkhoyan, K. A. Determining the thickness of atomically thin mos 2 and ws 2 in the tem. Ultramicroscopy 147, 8–20 (2014). (10.1016/j.ultramic.2014.05.007) / Ultramicroscopy by RJ Wu (2014)
  34. Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013). (10.1103/PhysRevLett.111.036104) / Phys. Rev. Lett. by G Constantinescu (2013)
  35. Wu, X., Vanderbilt, D. & Hamann, D. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005). (10.1103/PhysRevB.72.035105) / Phys. Rev. B by X Wu (2005)
  36. Aspnes, D. Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50, 704–709 (1982). (10.1119/1.12734) / Am. J. Phys. by D Aspnes (1982)
  37. Pauling, L. The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, vol. 18 (Cornell University Press, USA, 1960).
  38. Sohier, T., Calandra, M. & Mauri, F. Two-dimensional fröhlich interaction in transition-metal dichalcogenide monolayers: theoretical modeling and first-principles calculations. Phys. Rev. B 94, 085415 (2016). (10.1103/PhysRevB.94.085415) / Phys. Rev. B by T Sohier (2016)
  39. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). (10.1107/S0021889811038970) / J. Appl. Crystallogr. by K Momma (2011)
Dates
Type When
Created 7 years, 6 months ago (Feb. 22, 2018, 11:38 a.m.)
Deposited 1 year, 1 month ago (July 1, 2024, 8:31 a.m.)
Indexed 17 hours, 39 minutes ago (Aug. 22, 2025, 12:57 a.m.)
Issued 7 years, 5 months ago (March 8, 2018)
Published 7 years, 5 months ago (March 8, 2018)
Published Online 7 years, 5 months ago (March 8, 2018)
Funders 0

None

@article{Laturia_2018, title={Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk}, volume={2}, ISSN={2397-7132}, url={http://dx.doi.org/10.1038/s41699-018-0050-x}, DOI={10.1038/s41699-018-0050-x}, number={1}, journal={npj 2D Materials and Applications}, publisher={Springer Science and Business Media LLC}, author={Laturia, Akash and Van de Put, Maarten L. and Vandenberghe, William G.}, year={2018}, month=mar }