Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractSample fixation by vitrification is critical for the optimal structural preservation of biomolecules and subsequent high-resolution imaging by cryo-correlative light and electron microscopy (cryoCLEM). There is a large resolution gap between cryo fluorescence microscopy (cryoFLM), ~400-nm, and the sub-nanometre resolution achievable with cryo-electron microscopy (cryoEM), which hinders interpretation of cryoCLEM data. Here, we present a general approach to increase the resolution of cryoFLM using cryo-super-resolution (cryoSR) microscopy that is compatible with successive cryoEM investigation in the same region. We determined imaging parameters to avoid devitrification of the cryosamples without the necessity for cryoprotectants. Next, we examined the applicability of various fluorescent proteins (FPs) for single-molecule localisation cryoSR microscopy and found that all investigated FPs display reversible photoswitchable behaviour, and demonstrated cryoSR on lipid nanotubes labelled with rsEGFP2 and rsFastLime. Finally, we performed SR-cryoCLEM on mammalian cells expressing microtubule-associated protein-2 fused to rsEGFP2 and performed 3D cryo-electron tomography on the localised areas. The method we describe exclusively uses commercially available equipment to achieve a localisation precision of 30-nm. Furthermore, all investigated FPs displayed behaviour compatible with cryoSR microscopy, making this technique broadly available without requiring specialised equipment and will improve the applicability of this emerging technique for cellular and structural biology.

Bibliography

Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A., & Sharp, T. H. (2019). Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Scientific Reports, 9(1).

Authors 5
  1. Maarten W. Tuijtel (first)
  2. Abraham J. Koster (additional)
  3. Stefan Jakobs (additional)
  4. Frank G. A. Faas (additional)
  5. Thomas H. Sharp (additional)
References 57 Referenced 125
  1. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology 160, 135–145 (2007). (10.1016/j.jsb.2007.07.011) / Journal of Structural Biology by A Sartori (2007)
  2. van Driel, L. F., Valentijn, J. A., Valentijn, K. M., Koning, R. I. & Koster, A. J. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. European journal of cell biology 88, 669–684 (2009). (10.1016/j.ejcb.2009.07.002) / European journal of cell biology by LF van Driel (2009)
  3. Plitzko, J. M., Rigort, A. & Leis, A. Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Current opinion in biotechnology 20, 83–89 (2009). (10.1016/j.copbio.2009.03.008) / Current opinion in biotechnology by JM Plitzko (2009)
  4. Schorb, M. et al. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. Journal of structural biology (2016). (10.1016/j.jsb.2016.06.020)
  5. Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., Mcintosh, J. R. & Nicastro, D. Cryo‐fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. Journal of microscopy 227, 98–109 (2007). (10.1111/j.1365-2818.2007.01794.x) / Journal of microscopy by CL Schwartz (2007)
  6. Nienhaus, K. & Nienhaus, G. U. Fluorescent proteins for live-cell imaging with super-resolution. Chemical Society Reviews 43, 1088–1106 (2014). (10.1039/C3CS60171D) / Chemical Society Reviews by K Nienhaus (2014)
  7. Wolff, G., Hagen, C., Grünewald, K. & Kaufmann, R. Towards correlative super‐resolution fluorescence and electron cryo‐microscopy. Biology of the Cell (2016). (10.1111/boc.201600008)
  8. Hell, S. W. et al. The 2015 super-resolution microscopy roadmap. Journal of Physics D: Applied Physics 48, 443001 (2015). (10.1088/0022-3727/48/44/443001) / Journal of Physics D: Applied Physics by SW Hell (2015)
  9. Faoro, R. et al. Aberration-corrected cryoimmersion light microscopy. Proceedings of the National Academy of Sciences, 201717282 (2018). (10.1073/pnas.1717282115)
  10. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nature Reviews Molecular Cell Biology 18, 685 (2017). (10.1038/nrm.2017.71) / Nature Reviews Molecular Cell Biology by SJ Sahl (2017)
  11. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annual review of biochemistry 78, 993–1016 (2009). (10.1146/annurev.biochem.77.061906.092014) / Annual review of biochemistry by B Huang (2009)
  12. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). (10.1126/science.1127344) / Science by E Betzig (2006)
  13. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods 3, 793–796 (2006). (10.1038/nmeth929) / Nature methods by MJ Rust (2006)
  14. Andresen, M. et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology 26, 1035–1040 (2008). (10.1038/nbt.1493) / Nature Biotechnology by M Andresen (2008)
  15. Grotjohann, T. et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells. Elife 1, e00248 (2012). (10.7554/eLife.00248) / Elife by T Grotjohann (2012)
  16. Whelan, D. R. & Bell, T. D. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Scientific reports 5, 7924 (2015). (10.1038/srep07924) / Scientific reports by DR Whelan (2015)
  17. Tanaka, K. A. et al. Membrane molecules mobile even after chemical fixation. Nature Methods 7, 865 (2010). (10.1038/nmeth.f.314) / Nature Methods by KA Tanaka (2010)
  18. Annibale, P., Scarselli, M., Greco, M. & Radenovic, A. Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Optical Nanoscopy 1, 9 (2012). (10.1186/2192-2853-1-9) / Optical Nanoscopy by P Annibale (2012)
  19. Weisenburger, S. et al. Cryogenic Colocalization Microscopy for Nanometer‐Distance Measurements. ChemPhysChem 15, 763–770 (2014). (10.1002/cphc.201301080) / ChemPhysChem by S Weisenburger (2014)
  20. Moerner, W. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999). (10.1126/science.283.5408.1670) / Science by W Moerner (1999)
  21. Tuijtel, M. W. et al. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision. Scientific Reports 7, 10442 (2017). (10.1038/s41598-017-10905-x) / Scientific Reports by MW Tuijtel (2017)
  22. Hulleman, C. N., Li, W., Gregor, I., Rieger, B. & Enderlein, J. Photon yield enhancement of red fluorophores at cryogenic temperatures. ChemPhysChem (2018). (10.1101/263848)
  23. Kim, D. et al. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy. PloS one 10 (2015). (10.1371/journal.pone.0124581)
  24. Johnson, E. et al. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Scientific reports 5 (2015). (10.1038/srep09583)
  25. Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nature methods 8, 80–84 (2011). (10.1038/nmeth.1537) / Nature methods by S Watanabe (2011)
  26. Paez-Segala, M. G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nature methods 12, 215–218 (2015). (10.1038/nmeth.3225) / Nature methods by MG Paez-Segala (2015)
  27. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. The Journal of cell biology 192, 111–119 (2011). (10.1083/jcb.201009037) / The Journal of cell biology by W Kukulski (2011)
  28. Chang, Y.-W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods 11, 737–739 (2014). (10.1038/nmeth.2961) / Nature Methods by Y-W Chang (2014)
  29. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Letters 14, 4171–4175 (2014). (10.1021/nl501870p) / Nano Letters by R Kaufmann (2014)
  30. Liu, B. et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Scientific Reports 5, 13017 (2015). (10.1038/srep13017) / Scientific Reports by B Liu (2015)
  31. Xu, X. et al. Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. Science China Life Sciences, 1–8 (2018). (10.1007/s11427-018-9380-3)
  32. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nature Methods 7, 377–381 (2010). (10.1038/nmeth.1447) / Nature Methods by KI Mortensen (2010)
  33. Grassucci, R. A., Taylor, D. J. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nature protocols 2, 3239 (2007). (10.1038/nprot.2007.452) / Nature protocols by RA Grassucci (2007)
  34. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 102, 17565–17569 (2005). (10.1073/pnas.0506010102) / Proceedings of the National Academy of Sciences of the United States of America by M Hofmann (2005)
  35. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004). (10.1126/science.1102506) / Science by R Ando (2004)
  36. Nienhaus, K. & Nienhaus, G. U. Photoswitchable Fluorescent Proteins: Do Not Always Look on the Bright Side. ACS nano 10, 9104–9108 (2016). (10.1021/acsnano.6b06298) / ACS nano by K Nienhaus (2016)
  37. Jensen, N. A. et al. Coordinate-Targeted and Coordinate-Stochastic Super-Resolution Microscopy with the Reversibly Switchable Fluorescent Protein Dreiklang. ChemPhysChem 15, 756–762 (2014). (10.1002/cphc.201301034) / ChemPhysChem by NA Jensen (2014)
  38. Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophysical journal 93, 3285–3290 (2007). (10.1529/biophysj.107.112201) / Biophysical journal by A Egner (2007)
  39. Andresen, M. et al. Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences 104, 13005–13009 (2007). (10.1073/pnas.0700629104) / Proceedings of the National Academy of Sciences by M Andresen (2007)
  40. Faro, A. R. et al. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochemical & Photobiological Sciences 9, 254–262 (2010). (10.1039/b9pp00121b) / Photochemical & Photobiological Sciences by AR Faro (2010)
  41. Dahlberg, P. D. et al. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging. Journal of the American Chemical Society 140, 12310–12313 (2018). (10.1021/jacs.8b05960) / Journal of the American Chemical Society by PD Dahlberg (2018)
  42. Regis Faro, A. et al. Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. Journal of the American Chemical Society 133, 16362–16365 (2011). (10.1021/ja207001y) / Journal of the American Chemical Society by A Regis Faro (2011)
  43. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature methods 8, 1027–1036 (2011). (10.1038/nmeth.1768) / Nature methods by GT Dempsey (2011)
  44. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature protocols 6, 991–1009 (2011). (10.1038/nprot.2011.336) / Nature protocols by S van de Linde (2011)
  45. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996). (10.1016/0378-1119(95)00685-0) / Gene by BP Cormack (1996)
  46. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002). (10.1126/science.1074952) / Science by GH Patterson (2002)
  47. Stiel, A. C. et al. 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochemical Journal 402, 35–42 (2007). (10.1042/BJ20061401) / Biochemical Journal by AC Stiel (2007)
  48. Fuchs, J. et al. A photoactivatable marker protein for pulse-chase imaging with superresolution. Nature Methods 7, 627–630 (2010). (10.1038/nmeth.1477) / Nature Methods by J Fuchs (2010)
  49. Cho, H.-J. et al. Measurement of ice thickness on vitreous ice embedded cryo-EM grids: investigation of optimizing condition for visualizing macromolecules. Journal of Analytical Science and Technology 4, 1–5 (2013). (10.1186/2093-3371-4-1) / Journal of Analytical Science and Technology by H-J Cho (2013)
  50. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nature Methods 14, 102–103 (2017). (10.1038/nmeth.4170) / Nature Methods by P Paul-Gilloteaux (2017)
  51. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016). (10.1126/science.aad8857) / Science by J Mahamid (2016)
  52. Arnold, J. et al. Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy. Biophysical journal 110, 860–869 (2016). (10.1016/j.bpj.2015.10.053) / Biophysical journal by J Arnold (2016)
  53. Adam, V. et al. Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. Journal of the American Chemical Society 131, 18063–18065 (2009). (10.1021/ja907296v) / Journal of the American Chemical Society by V Adam (2009)
  54. Wilson-Kubalek, E. M., Brown, R. E., Celia, H. & Milligan, R. A. Lipid nanotubes as substrates for helical crystallization of macromolecules. Proceedings of the National Academy of Sciences 95, 8040–8045 (1998). (10.1073/pnas.95.14.8040) / Proceedings of the National Academy of Sciences by EM Wilson-Kubalek (1998)
  55. Lamesch, P. et al. hORFeomev3. 1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–315 (2007). (10.1016/j.ygeno.2006.11.012) / Genomics by P Lamesch (2007)
  56. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014). (10.1093/bioinformatics/btu202) / Bioinformatics by M Ovesný (2014)
  57. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical journal 82, 2775–2783 (2002). (10.1016/S0006-3495(02)75618-X) / Biophysical journal by RE Thompson (2002)
Dates
Type When
Created 6 years, 6 months ago (Feb. 4, 2019, 6:04 a.m.)
Deposited 2 years, 8 months ago (Dec. 17, 2022, 12:37 a.m.)
Indexed 6 hours, 24 minutes ago (Aug. 21, 2025, 12:56 p.m.)
Issued 6 years, 6 months ago (Feb. 4, 2019)
Published 6 years, 6 months ago (Feb. 4, 2019)
Published Online 6 years, 6 months ago (Feb. 4, 2019)
Funders 0

None

@article{Tuijtel_2019, title={Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins}, volume={9}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-018-37728-8}, DOI={10.1038/s41598-018-37728-8}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Tuijtel, Maarten W. and Koster, Abraham J. and Jakobs, Stefan and Faas, Frank G. A. and Sharp, Thomas H.}, year={2019}, month=feb }