Abstract
AbstractBulk equiatomic (Hf-Ta-Zr-Ti)C and (Hf-Ta-Zr-Nb)C high entropy Ultra-High Temperature Ceramic (UHTC) carbide compositions were fabricated by ball milling and Spark Plasma Sintering (SPS). It was found that the lattice parameter mismatch of the component monocarbides is a key factor for predicting single phase solid solution formation. The processing route was further optimised for the (Hf-Ta-Zr-Nb)C composition to produce a high purity, single phase, homogeneous, bulk high entropy material (99% density); revealing a vast new compositional space for the exploration of new UHTCs. One sample was observed to chemically decompose; indicating the presence of a miscibility gap. While this suggests the system is not thermodynamically stable to room temperature, it does reveal further potential for the development of new in situ formed UHTC nanocomposites. The optimised material was subjected to nanoindentation testing and directly compared to the constituent mono/binary carbides, revealing a significantly enhanced hardness (36.1 ± 1.6 GPa,) compared to the hardest monocarbide (HfC, 31.5 ± 1.3 GPa) and the binary (Hf-Ta)C (32.9 ± 1.8 GPa).
Authors
5
- Elinor Castle (first)
- Tamás Csanádi (additional)
- Salvatore Grasso (additional)
- Ján Dusza (additional)
- Michael Reece (additional)
References
54
Referenced
703
-
Cedillos-Barraza, O. et al. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system. Scientific Reports 6, 37962, https://doi.org/10.1038/srep37962 (2016).
(
10.1038/srep37962
) / Scientific Reports by O Cedillos-Barraza (2016) -
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 375-377, 213–218, https://doi.org/10.1016/j.msea.2003.10.257 (2004).
(
10.1016/j.msea.2003.10.257
) / Materials Science and Engineering: A by B Cantor (2004) -
Yeh, J. W. et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials 6, 299–303, https://doi.org/10.1002/adem.200300567 (2004).
(
10.1002/adem.200300567
) / Advanced Engineering Materials by JW Yeh (2004) -
Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science 61, 1–93, https://doi.org/10.1016/j.pmatsci.2013.10.001 (2014).
(
10.1016/j.pmatsci.2013.10.001
) / Progress in Materials Science by Y Zhang (2014) -
Tsai, M.-H. & Yeh, J.-W. High-Entropy Alloys: A Critical Review. Materials Research Letters 2, 107–123, https://doi.org/10.1080/21663831.2014.912690 (2014).
(
10.1080/21663831.2014.912690
) / Materials Research Letters by M-H Tsai (2014) -
Gild, J. et al. High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics. Scientific Reports 6, 37946, https://doi.org/10.1038/srep37946 (2016).
(
10.1038/srep37946
) / Scientific Reports by J Gild (2016) -
Pickering, E. J. & Jones, N. G. High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews 61, 183–202, https://doi.org/10.1080/09506608.2016.1180020 (2016).
(
10.1080/09506608.2016.1180020
) / International Materials Reviews by EJ Pickering (2016) -
Vladescu, A. et al. In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings. PLOS ONE 11, e0161151, https://doi.org/10.1371/journal.pone.0161151 (2016).
(
10.1371/journal.pone.0161151
) / PLOS ONE by A Vladescu (2016) -
Gorban’, V. F. et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. Journal of Superhard Materials 39, 166–171, https://doi.org/10.3103/S1063457617030030 (2017).
(
10.3103/S1063457617030030
) / Journal of Superhard Materials by VF Gorban’ (2017) -
Ghaffari, S. A., Faghihi-Sani, M. A., Golestani-Fard, F. & Nojabayy, M. Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC. International Journal of Refractory Metals and Hard Materials 41, 180–184, https://doi.org/10.1016/j.ijrmhm.2013.03.009 (2013).
(
10.1016/j.ijrmhm.2013.03.009
) / International Journal of Refractory Metals and Hard Materials by SA Ghaffari (2013) -
Gao, F. Hardness of cubic solid solutions. Scientific Reports 7, 40276, https://doi.org/10.1038/srep40276 (2017).
(
10.1038/srep40276
) / Scientific Reports by F Gao (2017) -
Cedillos-Barraza, O. et al. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering. Journal of the European Ceramic Society 36, 1539–1548, https://doi.org/10.1016/j.jeurceramsoc.2016.02.009 (2016).
(
10.1016/j.jeurceramsoc.2016.02.009
) / Journal of the European Ceramic Society by O Cedillos-Barraza (2016) -
Jayaraj, J., Thinaharan, C., Ningshen, S., Mallika, C. & Kamachi Mudali, U. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics 89, 123–132, https://doi.org/10.1016/j.intermet.2017.06.002 (2017).
(
10.1016/j.intermet.2017.06.002
) / Intermetallics by J Jayaraj (2017) -
Senkov, O. N. & Woodward, C. F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A 529, 311–320, https://doi.org/10.1016/j.msea.2011.09.033 (2011).
(
10.1016/j.msea.2011.09.033
) / Materials Science and Engineering: A by ON Senkov (2011) -
Wu, Y. D. et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Materials Letters 130, 277–280, https://doi.org/10.1016/j.matlet.2014.05.134 (2014).
(
10.1016/j.matlet.2014.05.134
) / Materials Letters by YD Wu (2014) -
Couzinié, J. P. et al. Microstructure of a near-equimolar refractory high-entropy alloy. Materials Letters 126, 285–287, https://doi.org/10.1016/j.matlet.2014.04.062 (2014).
(
10.1016/j.matlet.2014.04.062
) / Materials Letters by JP Couzinié (2014) -
Maiti, S. & Steurer, W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Materialia 106, 87–97, https://doi.org/10.1016/j.actamat.2016.01.018 (2016).
(
10.1016/j.actamat.2016.01.018
) / Acta Materialia by S Maiti (2016) -
Yu, B. B. & Davis, R. F. Self-diffusion of 95Nb in single crystals of NbCx. Journal of Physics and Chemistry of Solids 42, 83–87, https://doi.org/10.1016/0022-3697(81)90092-5 (1981).
(
10.1016/0022-3697(81)90092-5
) / Journal of Physics and Chemistry of Solids by BB Yu (1981) -
Yu, B. B. & Davis, R. F. Self-diffusion of 14C in single crystals of NBCx. Journal of Physics and Chemistry of Solids 40, 997–1006, https://doi.org/10.1016/0022-3697(79)90131-8 (1979).
(
10.1016/0022-3697(79)90131-8
) / Journal of Physics and Chemistry of Solids by BB Yu (1979) -
Sarian, S. Diffusion of 44Ti in TiCx. Journal of Applied Physics 40, 3515–3520, https://doi.org/10.1063/1.1658229 (1969).
(
10.1063/1.1658229
) / Journal of Applied Physics by S Sarian (1969) -
Sarian, S. Carbon self-diffusion in disordered V6C5. Journal of Physics and Chemistry of Solids 33, 1637–1643, https://doi.org/10.1016/S0022-3697(72)80458-X (1972).
(
10.1016/S0022-3697(72)80458-X
) / Journal of Physics and Chemistry of Solids by S Sarian (1972) - Demaske, B. J., Chernatynskiy, A. & Phillpot, S. R. First-principles investigation of intrinsic defects and self-diffusion in ordered phases of V 2 C. Journal of Physics: Condensed Matter 29, 245403 (2017). / Journal of Physics: Condensed Matter by BJ Demaske (2017)
-
Yu, X.-X., Thompson, G. B. & Weinberger, C. R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. Journal of the European Ceramic Society 35, 95–103, https://doi.org/10.1016/j.jeurceramsoc.2014.08.021 (2015).
(
10.1016/j.jeurceramsoc.2014.08.021
) / Journal of the European Ceramic Society by X-X Yu (2015) -
Heiligers, C., Pretorius, C. J. & Neethling, J. H. Interdiffusion of hafnium carbide and titanium carbide during hot-pressing. International Journal of Refractory Metals and Hard Materials 31, 51–55, https://doi.org/10.1016/j.ijrmhm.2011.09.005 (2012).
(
10.1016/j.ijrmhm.2011.09.005
) / International Journal of Refractory Metals and Hard Materials by C Heiligers (2012) -
Adjaoud, O., Steinle-Neumann, G., Burton, B. P. & van de Walle, A. First-principles phase diagram calculations for the HfC-TiC, ZrC-TiC, and HfC-ZrC solid solutions. Physical Review B 80, 134112 (2009).
(
10.1103/PhysRevB.80.134112
) / Physical Review B by O Adjaoud (2009) - Hollek, H. (eds H. Fischmeister & H. Jehn) (DGM Informationsgesellschaft, Oberursel, 1987).
- ACerS-NIST. In Phase Equilibria Diagram, CD-ROM Database. (2005).
-
Markström, A., Andersson, D. & Frisk, K. Combined ab-initio and experimental assessment of A1−xBxC mixed carbides. Calphad 32, 615–623, https://doi.org/10.1016/j.calphad.2008.07.014 (2008).
(
10.1016/j.calphad.2008.07.014
) / Calphad by A Markström (2008) -
Ma, T. et al. Self-organizing nanostructured lamellar (Ti,Zr)C — A superhard mixed carbide. International Journal of Refractory Metals and Hard Materials 51, 25–28, https://doi.org/10.1016/j.ijrmhm.2015.02.010 (2015).
(
10.1016/j.ijrmhm.2015.02.010
) / International Journal of Refractory Metals and Hard Materials by T Ma (2015) -
Borgh, I., Hedström, P., Blomqvist, A., Ågren, J. & Odqvist, J. Synthesis and phase separation of (Ti,Zr)C. Acta Materialia 66, 209–218, https://doi.org/10.1016/j.actamat.2013.11.074 (2014).
(
10.1016/j.actamat.2013.11.074
) / Acta Materialia by I Borgh (2014) -
Hörling, A., Hultman, L., Odén, M., Sjölén, J. & Karlsson, L. Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surface and Coatings Technology 191, 384–392, https://doi.org/10.1016/j.surfcoat.2004.04.056 (2005).
(
10.1016/j.surfcoat.2004.04.056
) / Surface and Coatings Technology by A Hörling (2005) -
Mayrhofer, P. H. et al. Self-organized nanostructures in the Ti–Al–N system. Applied Physics Letters 83, 2049–2051, https://doi.org/10.1063/1.1608464 (2003).
(
10.1063/1.1608464
) / Applied Physics Letters by PH Mayrhofer (2003) -
Balko, J. et al. Nanoindentation and tribology of VC, NbC and ZrC refractory carbides. Journal of the European Ceramic Society 37, 4371–4377, https://doi.org/10.1016/j.jeurceramsoc.2017.04.064 (2017).
(
10.1016/j.jeurceramsoc.2017.04.064
) / Journal of the European Ceramic Society by J Balko (2017) -
Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19, 3–20, https://doi.org/10.1557/jmr.2004.19.1.3 (2011).
(
10.1557/jmr.2004.19.1.3
) / Journal of Materials Research by WC Oliver (2011) -
Pharr, G. M., Herbert, E. G. & Gao, Y. The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations. Annual Review of Materials Research 40, 271–292, https://doi.org/10.1146/annurev-matsci-070909-104456 (2010).
(
10.1146/annurev-matsci-070909-104456
) / Annual Review of Materials Research by GM Pharr (2010) -
Rowcliffe, D. J. & Hollox, G. E. Plastic flow and fracture of tantalum carbide and hafnium carbide at low temperatures. Journal of Materials Science 6, 1261–1269, https://doi.org/10.1007/BF00552039 (1971).
(
10.1007/BF00552039
) / Journal of Materials Science by DJ Rowcliffe (1971) -
De Leon, N., Yu, X.-X., Yu, H., Weinberger, C. R. & Thompson, G. B. Bonding effect on the slip differences in the B1 monocarbides. Phys. Rev. Lett 114, 165502, https://doi.org/10.1103/PhysRevLett.114.165502 (2015).
(
10.1103/PhysRevLett.114.165502
) / Phys. Rev. Lett by N De Leon (2015) -
Kiani, S., Yang, J.-M. & Kodambaka, S. Nanomechanics of Refractory Transition-Metal Carbides: A Path to Discovering Plasticity in Hard Ceramics. Journal of the American Ceramic Society 98, 2313–2323, https://doi.org/10.1111/jace.13686 (2015).
(
10.1111/jace.13686
) / Journal of the American Ceramic Society by S Kiani (2015) -
Kumashiro, Y., Itoh, A., Kinoshita, T. & Sobajima, M. The micro-vickers hardness of TiC single crystals up to 1500C. Journal of Materials Science 12, 595–601, https://doi.org/10.1007/BF00540285 (1977).
(
10.1007/BF00540285
) / Journal of Materials Science by Y Kumashiro (1977) -
Kumashiro, Y. et al. The preparation and characteristics of ZrC and TaC single crystals using an r.f. floating-zone process. Journal of Materials Science 16, 2930–2933, https://doi.org/10.1007/BF00552985 (1981).
(
10.1007/BF02402865
) / Journal of Materials Science by Y Kumashiro (1981) -
Lee, D. & Haggerty, J. Plasticity and creep in single crystals of zirconium carbide. Journal of the American Ceramic Society 52, 641–647, https://doi.org/10.1111/j.1151-2916.1969.tb16067.x (1969).
(
10.1111/j.1151-2916.1969.tb16067.x
) / Journal of the American Ceramic Society by D Lee (1969) -
Chien, F., Ning, X. & Heuer, A. Slip systems and dislocation emission from crack tips in single crystal TiC at low temperatures. Acta Materialia 44, 2265–2283, https://doi.org/10.1016/1359-6454(95)00360-6 (1996).
(
10.1016/1359-6454(95)00360-6
) / Acta Materialia by F Chien (1996) -
Smith, C. J., Yu, X.-X., Guo, Q., Weinberger, C. R. & Thompson, G. B. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Materialia 145, 142–153, https://doi.org/10.1016/j.actamat.2017.11.038 (2018).
(
10.1016/j.actamat.2017.11.038
) / Acta Materialia by CJ Smith (2018) -
Grasso, S., Sakka, Y. & Maizza, G. Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Science and Technology of Advanced Materials 10, 053001 (2009).
(
10.1088/1468-6996/10/5/053001
) / Science and Technology of Advanced Materials by S Grasso (2009) -
Vlassak, J. J. & Nix, W. D. Measuring the elastic properties of anisotropic materials by means of indentation experiments. Journal of the Mechanics and Physics of Solids 42, 1223–1245, https://doi.org/10.1016/0022-5096(94)90033-7 (1994).
(
10.1016/0022-5096(94)90033-7
) / Journal of the Mechanics and Physics of Solids by JJ Vlassak (1994) - Fluck, E. & Heumann, K. G. (Wiley VCH 2007).
-
Lengauer, W. et al. Solid state properties of group IVb carbonitrides. Journal of Alloys and Compounds 217, 137–147, https://doi.org/10.1016/0925-8388(94)01315-9 (1995).
(
10.1016/0925-8388(94)01315-9
) / Journal of Alloys and Compounds by W Lengauer (1995) -
Bittner, H. & Goretzki, H. Magnetische Untersuchungen der CarbideTiC, ZrC, HfC, VC, NbC und TaC. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 93, 1000–1004, https://doi.org/10.1007/BF00905899 (1962).
(
10.1007/BF00905899
) / Monatshefte für Chemie und verwandte Teile anderer Wissenschaften by H Bittner (1962) - Juenke, C. In ICDD reference 00-019-1487; XRD data for Zirconium Carbide (General Electric, NM & PO. Cincinnati, Ohio, USA 1967).
- Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C. & Dragoo, A. In ICDD Grant-In-Aid (NBS, Gaithersburg, MD, USA 1986).
-
Čapková, P., Karen, P. & Dobiášová, L. Determination of Molar Ratio in AB1-x Rocksalt-type Compounds by X-ray Powder Diffraction Method. Application to TiC1-x. Crystal Research and Technology 21, 735–740, https://doi.org/10.1002/crat.2170210609 (1986).
(
10.1002/crat.2170210609
) / Crystal Research and Technology by P Čapková (1986) -
Fernández Guillermet, A. Analysis of thermochemical properties and phase stability in the zirconium-carbon system. Journal of Alloys and Compounds 217, 69–89, https://doi.org/10.1016/0925-8388(94)01310-E (1995).
(
10.1016/0925-8388(94)01310-E
) / Journal of Alloys and Compounds by A Fernández Guillermet (1995) -
Smith, J. F., Carlson, O. N. & De Avillez, R. R. The niobium-carbon system. Journal of Nuclear Materials 148, 1–16, https://doi.org/10.1016/0022-3115(87)90512-5 (1987).
(
10.1016/0022-3115(87)90512-5
) / Journal of Nuclear Materials by JF Smith (1987) -
Frisk, K. A revised thermodynamic description of the Ti–C system. Calphad 27, 367–373, https://doi.org/10.1016/j.calphad.2004.01.004 (2003).
(
10.1016/j.calphad.2004.01.004
) / Calphad by K Frisk (2003)
Dates
Type | When |
---|---|
Created | 7 years, 3 months ago (May 30, 2018, 6:47 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 21, 2022, 1 a.m.) |
Indexed | 9 hours, 16 minutes ago (Aug. 31, 2025, 7:14 p.m.) |
Issued | 7 years, 2 months ago (June 5, 2018) |
Published | 7 years, 2 months ago (June 5, 2018) |
Published Online | 7 years, 2 months ago (June 5, 2018) |
@article{Castle_2018, title={Processing and Properties of High-Entropy Ultra-High Temperature Carbides}, volume={8}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-018-26827-1}, DOI={10.1038/s41598-018-26827-1}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Castle, Elinor and Csanádi, Tamás and Grasso, Salvatore and Dusza, Ján and Reece, Michael}, year={2018}, month=jun }