Abstract
AbstractSelection of appropriate channel material is the key to design high performance tunnel field effect transistor (TFET), which promises to outperform the conventional metal oxide semiconductor field effect transistor (MOSFET) in ultra-low energy switching applications. Recently discovered atomically thin GeSe, a group IV mono-chalcogenide, can be a potential candidate owing to its direct electronic band gap and low carrier effective mass. In this work we employ ballistic quantum transport model to assess the intrinsic performance limit of monolayer GeSe-TFET. We first study the electronic band structure by regular and hybrid density functional theory and develop two bandk · phamiltonian for the material. We find that the complex band wraps itself within the conduction band and valence band edges and thus signifies efficient band to band tunneling mechanism. We then use thek · phamiltonian to calculate self-consistent solution of the transport equations within the non-equilibrium Green’s function formalism and the Poisson’s equation based electrostatic potential. Keeping the OFF-current fixed at 10 pA/μm we investigate different static and dynamic performance metrics (ON current, energy and delay) under three different constant-field scaling rules: 40, 30 and 20 nm/V. Our study shows that monolayer GeSe-TFET is scalable till 8 nm while preserving ON/OFF current ratio higher than 104.
Authors
4
- Madhuchhanda Brahma (first)
- Arnab Kabiraj (additional)
- Dipankar Saha (additional)
- Santanu Mahapatra (additional)
References
76
Referenced
28
-
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 256–268 (1974).
(
10.1109/JSSC.1974.1050511
) / IEEE Journal of Solid-State Circuits by RH Dennard (1974) - Johnsson, L. & Netzer, G. The impact of Moore’s Law and loss of Dennard scaling: Are DSP SoCs an energy efficient alternative to x86 SoCs? Journal of Physics: Conference Series 762, 012022 (2016). / Journal of Physics: Conference Series by L Johnsson (2016)
-
Moore, G. E. Cramming more components onto integrated circuits. Proceedings of the IEEE 86, 82–85 (1998).
(
10.1109/JPROC.1998.658762
) / Proceedings of the IEEE by GE Moore (1998) -
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano letters 8, 405–410 (2008).
(
10.1021/nl071804g
) / Nano letters by S Salahuddin (2008) -
Zhirnov, V. V. & Cavin, R. K. Nanoelectronics: Negative capacitance to the rescue? Nature Nanotechnology 3, 77–78 (2008).
(
10.1038/nnano.2008.18
) / Nature Nanotechnology by VV Zhirnov (2008) -
Gopalakrishnan, K., Griffin, P. B. & Plummer, J. D. I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q. In Electron Devices Meeting, 2002. IEDM'02. International, 289–292 (IEEE, 2002).
(
10.1109/IEDM.2002.1175835
) -
Choi, W. Y., Song, J. Y., Lee, J. D., Park, Y. J. & Park, B. G. 70-nm impact-ionization metal-oxide-semiconductor (I-MOS) devices integrated with tunneling field-effect transistors (TFETs). In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 955–958 (IEEE, 2005).
(
10.1109/IEDM.2005.1609519
) -
Björk, M. T., Hayden, O., Schmid, H., Riel, H. & Riess, W. Vertical surround-gated silicon nanowire impact ionization field-effect transistors. Applied Physics Letters 90, 142110 (2007).
(
10.1063/1.2720640
) / Applied Physics Letters by MT Björk (2007) -
Mayer, F. et al. Impact of SOI, Si1−xGe x OI and GeOI substrates on CMOS compatible tunnel FET performance. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 1–5 (IEEE, 2008).
(
10.1109/IEDM.2008.4796641
) -
Verhulst, A. S., Vandenberghe, W. G., Maex, K. & Groeseneken, G. Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. Journal of Applied Physics 104, 064514 (2008).
(
10.1063/1.2981088
) / Journal of Applied Physics by AS Verhulst (2008) -
Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proceedings of the IEEE 98, 2095–2110 (2010).
(
10.1109/JPROC.2010.2070470
) / Proceedings of the IEEE by AC Seabaugh (2010) -
Avci, U. E., Morris, D. H. & Young, I. A. Tunnel field-effect transistors: Prospects and challenges. IEEE Journal of the Electron Devices Society 3, 88–95 (2015).
(
10.1109/JEDS.2015.2390591
) / IEEE Journal of the Electron Devices Society by UE Avci (2015) -
Gandhi, R., Chen, Z., Singh, N., Banerjee, K. & Lee, S. Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (≤50 mV/decade)at Room Temperature. IEEE Electron Device Letters 32, 437–439 (2011).
(
10.1109/LED.2011.2106757
) / IEEE Electron Device Letters by R Gandhi (2011) -
Lu, H. & Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE Journal of the Electron Devices Society 2, 44–49 (2014).
(
10.1109/JEDS.2014.2326622
) / IEEE Journal of the Electron Devices Society by H Lu (2014) -
Luisier, M. & Klimeck, G. Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. Journal of Applied Physics 107, 084507 (2010).
(
10.1063/1.3386521
) / Journal of Applied Physics by M Luisier (2010) -
Knoch, J. & Appenzeller, J. Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Letters 31, 305–307 (2010).
(
10.1109/LED.2010.2041180
) / IEEE Electron Device Letters by J Knoch (2010) - Zhou, G. et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high I ON of 180 μ A/μm at VDS = 0.5 V. In Electron Devices Meeting (IEDM), 2012 IEEE International, 32–6 (IEEE, 2012).
-
Li, R. et al. AlGaSb/InAs Tunnel Field-Effect Transistor With On-Current of 78 μA/μm at 0.5 V. IEEE electron device letters 33, 363–365 (2012).
(
10.1109/LED.2011.2179915
) / IEEE electron device letters by R Li (2012) - Kim, S. H., Kam, H., Hu, C. & Liu, T. J. K. Germanium-source tunnel field effect transistors with record high I ON /I OFF . In VLSI Technology, 2009 Symposium on, 178–179 (IEEE, 2009).
-
Lee, M. H., Chang, S. T., Wu, T. H. & Tseng, W. N. Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect. IEEE Electron Device Letters 32, 1355–1357 (2011).
(
10.1109/LED.2011.2163379
) / IEEE Electron Device Letters by MH Lee (2011) -
Damrongplasit, N., Shin, C., Kim, S. H., Vega, R. A. & Liu, T. J. K. Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Transactions on Electron Devices 58, 3541–3548 (2011).
(
10.1109/TED.2011.2161990
) / IEEE Transactions on Electron Devices by N Damrongplasit (2011) -
Zhang, Q., Fang, T., Xing, H., Seabaugh, A. & Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Letters 29, 1344–1346 (2008).
(
10.1109/LED.2008.2005650
) / IEEE Electron Device Letters by Q Zhang (2008) -
Zhao, P., Chauhan, J. & Guo, J. Computational study of tunneling transistor based on graphene nanoribbon. Nano letters 9, 684–688 (2009).
(
10.1021/nl803176x
) / Nano letters by P Zhao (2009) -
Chin, S. K., Seah, D., Lam, K. T., Samudra, G. S. & Liang, G. Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transactions on Electron Devices 57, 3144–3152 (2010).
(
10.1109/TED.2010.2065809
) / IEEE Transactions on Electron Devices by SK Chin (2010) -
Lam, K. T., Cao, X. & Guo, J. Device performance of heterojunction tunneling field-effect transistors based on transition metal dichalcogenide monolayer. IEEE Electron Device Letters 34, 1331–1333 (2013).
(
10.1109/LED.2013.2277918
) / IEEE Electron Device Letters by KT Lam (2013) -
Ilatikhameneh, H. et al. Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 1, 12–18 (2015).
(
10.1109/JXCDC.2015.2423096
) / IEEE Journal on Exploratory Solid-State Computational Devices and Circuits by H Ilatikhameneh (2015) -
Seo, J., Jung, S. & Shin, M. The Performance of Uniaxially Strained Phosphorene Tunneling Field-Effect Transistors. IEEE Electron Device Letters 38, 1150–1152 (2017).
(
10.1109/LED.2017.2712259
) / IEEE Electron Device Letters by J Seo (2017) -
Chen, F. W., Ilatikhameneh, H., Ameen, T. A., Klimeck, G. & Rahman, R. Thickness engineered tunnel field-effect transistors based on phosphorene. IEEE Electron Device Letters 38, 130–133 (2017).
(
10.1109/LED.2016.2627538
) / IEEE Electron Device Letters by FW Chen (2017) -
Ameen, T. A., Ilatikhameneh, H., Klimeck, G. & Rahman, R. Few-layer phosphorene: An ideal 2D material for tunnel transistors. Scientific reports 6, 28515 (2016).
(
10.1038/srep28515
) / Scientific reports by TA Ameen (2016) -
Szabó, Á., Koester, S. J. & Luisier, M. Ab-initio simulation of van der waals MoTe 2–SnS 2 heterotunneling fets for low-power electronics. IEEE Electron Device Letters 36, 514–516 (2015).
(
10.1109/LED.2015.2409212
) / IEEE Electron Device Letters by Á Szabó (2015) -
Cao, J. et al. Operation and Design of van der Waals Tunnel Transistors: A 3-D Quantum Transport Study. IEEE Transactions on Electron Devices 63, 4388–4394 (2016).
(
10.1109/TED.2016.2605144
) / IEEE Transactions on Electron Devices by J Cao (2016) -
Chen, F. et al. Transport in vertically stacked hetero-structures from 2D materials. In Journal of Physics: Conference Series, vol. 864, 012053 (IOP Publishing, 2017).
(
10.1088/1742-6596/864/1/012053
) -
Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).
(
10.1038/nature15387
) / Nature by D Sarkar (2015) -
Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. Acs Nano 9, 2071–2079 (2015).
(
10.1021/nn507278b
) / Acs Nano by T Roy (2015) -
Aretouli, K. E. et al. Epitaxial 2D SnSe2/2D WSe2 van der Waals Heterostructures. ACS applied materials & interfaces 8, 23222–23229 (2016).
(
10.1021/acsami.6b02933
) / ACS applied materials & interfaces by KE Aretouli (2016) -
Singh, A. K. & Hennig, R. G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Applied Physics Letters 105, 042103 (2014).
(
10.1063/1.4891230
) / Applied Physics Letters by AK Singh (2014) -
Hu, Y. et al. GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass. Applied Physics Letters 107, 122107 (2015).
(
10.1063/1.4931459
) / Applied Physics Letters by Y Hu (2015) -
Shi, G. & Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano letters 15, 6926–6931 (2015).
(
10.1021/acs.nanolett.5b02861
) / Nano letters by G Shi (2015) -
Zhang, S. et al. Structural and electronic properties of atomically thin germanium selenide polymorphs. Science China Materials 58, 929–935 (2015).
(
10.1007/s40843-015-0107-5
) / Science China Materials by S Zhang (2015) -
Gomes, L. C. & Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Physical Review B 92, 085406 (2015).
(
10.1103/PhysRevB.92.085406
) / Physical Review B by LC Gomes (2015) -
Xu, L., Yang, M., Wang, S. J. & Feng, Y. P. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M = Ge, Sn; X = S, Se, Te). Physical Review B 95, 235434 (2017).
(
10.1103/PhysRevB.95.235434
) / Physical Review B by L Xu (2017) -
Cheng, K. et al. Lateral heterostructures of monolayer group-IV monochalcogenides: band alignment and electronic properties. Journal of Materials Chemistry C 5, 3788–3795 (2017).
(
10.1039/C7TC00595D
) / Journal of Materials Chemistry C by K Cheng (2017) -
Yoon, S. M., Song, H. J. & Choi, H. C. p-Type Semiconducting GeSe Combs by a Vaporization–Condensation–Recrystallization (VCR) Process. Advanced Materials 22, 2164–2167 (2010).
(
10.1002/adma.200903719
) / Advanced Materials by SM Yoon (2010) -
Vaughn, D. D. II, Patel, R. J., Hickner, M. A. & Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. Journal of the American Chemical Society 132, 15170–15172 (2010).
(
10.1021/ja107520b
) / Journal of the American Chemical Society by DD Vaughn II (2010) -
Xue, D. J. et al. Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet. Advanced Materials 24, 4528–4533 (2012).
(
10.1002/adma.201201855
) / Advanced Materials by DJ Xue (2012) -
Vaughn, D. D. et al. Colloidal Synthesis and Electrical Properties of GeSe Nanobelts. Chemistry of Materials 24, 3643–3649 (2012).
(
10.1021/cm3023192
) / Chemistry of Materials by DD Vaughn (2012) -
Mukherjee, B. et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS applied materials & interfaces 5, 9594–9604 (2013).
(
10.1021/am402550s
) / ACS applied materials & interfaces by B Mukherjee (2013) -
Ramasamy, P., Kwak, D., Lim, D. H., Ra, H. S. & Lee, J. S. Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors. Journal of Materials Chemistry C 4, 479–485 (2016).
(
10.1039/C5TC03667D
) / Journal of Materials Chemistry C by P Ramasamy (2016) -
Xue, D. J. et al. GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. J. Am. Chem. Soc 139, 958–965 (2017).
(
10.1021/jacs.6b11705
) / J. Am. Chem. Soc by DJ Xue (2017) -
Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Physical Review B 94, 054103 (2016).
(
10.1103/PhysRevB.94.054103
) / Physical Review B by LC Gomes (2016) -
Guo, Y., Zhou, S., Bai, Y. & Zhao, J. Oxidation resistance of monolayer group-IV monochalcogenides. ACS Applied Materials & Interfaces 9, 12013–12020 (2017).
(
10.1021/acsami.6b16786
) / ACS Applied Materials & Interfaces by Y Guo (2017) - 2dsemiconductors. http://www.2dsemiconductors.com/germanium-selenide-gese/. Last accessed: 2017-11-26.
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters 77, 3865 (1996).
(
10.1103/PhysRevLett.77.3865
) / Physical review letters by JP Perdew (1996) -
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics 118, 8207–8215 (2003).
(
10.1063/1.1564060
) / The Journal of Chemical Physics by J Heyd (2003) -
Peng, X., Wei, Q. & Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Physical Review B 90, 085402 (2014).
(
10.1103/PhysRevB.90.085402
) / Physical Review B by X Peng (2014) -
Ziletti, A. et al. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Physical Review B 91, 085407 (2015).
(
10.1103/PhysRevB.91.085407
) / Physical Review B by A Ziletti (2015) -
Wang, L., Kutana, A., Zou, X. & Yakobson, B. I. Electro-mechanical anisotropy of phosphorene. Nanoscale 7, 9746–9751 (2015).
(
10.1039/C5NR00355E
) / Nanoscale by L Wang (2015) - International Technology Roadmap for Semiconductors. http://www.itrs2.net/2013-itrs.html. Last accessed: 2017-11-26.
-
Sylvia, S. S., Khayer, M. A., Alam, K. & Lake, R. K. Doping, tunnel barriers, and cold carriers in InAs and InSb nanowire tunnel transistors. IEEE transactions on electron devices 59, 2996–3001 (2012).
(
10.1109/TED.2012.2212442
) / IEEE transactions on electron devices by SS Sylvia (2012) -
Knoch, J., Mantl, S. & Appenzeller, J. Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices. Solid-State Electronics 51, 572–578 (2007).
(
10.1016/j.sse.2007.02.001
) / Solid-State Electronics by J Knoch (2007) -
Terrones, H., López-Uras, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific reports 3, 1549 (2013).
(
10.1038/srep01549
) / Scientific reports by H Terrones (2013) -
Paul, A. K. et al. Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Materials and Applications 1, 17 (2017).
(
10.1038/s41699-017-0017-3
) / npj 2D Materials and Applications by AK Paul (2017) -
Koswatta, S. O., Lundstrom, M. S. & Nikonov, D. E. Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Transactions on Electron Devices 56, 456–465 (2009).
(
10.1109/TED.2008.2011934
) / IEEE Transactions on Electron Devices by SO Koswatta (2009) -
Logoteta, D., Fiori, G. & Iannaccone, G. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Scientific reports 4 (2014).
(
10.1038/srep06607
) - Kresse, G. & Furhmuller, J. Software VASP, Vienna (1999)
-
Kresse G. and Hafner J. Phys. Rev. B 47, R558 (1993).
(
10.1103/PhysRevB.47.558
) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 54, 11169 (1996).
(
10.1103/PhysRevB.54.11169
) / Physical review B by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Computational materials science by G Kresse (1996) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758 (1999).
(
10.1103/PhysRevB.59.1758
) / Physical Review B by G Kresse (1999) - QuantumWise Atomistix ToolKit (ATK) with Virtual NanoLab. http://quantumwise.com/. Last accessed: 2017-11-26.
-
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Physical Review B 88, 085117 (2013).
(
10.1103/PhysRevB.88.085117
) / Physical Review B by DR Hamann (2013) -
Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Computer Physics Communications 196, 36–44 (2015).
(
10.1016/j.cpc.2015.05.011
) / Computer Physics Communications by M Schlipf (2015) -
Appelbaum, I. & Li, P. Electrons, holes, and spin in the IV-VI monolayer four-six-enes. Physical Review B 94, 155124 (2016).
(
10.1103/PhysRevB.94.155124
) / Physical Review B by I Appelbaum (2016) -
Rodin, A. S., Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Valley physics in tin (II) sulfide. Physical Review B 93, 045431 (2016).
(
10.1103/PhysRevB.93.045431
) / Physical Review B by AS Rodin (2016) -
Datta, S. Quantum Transport: Atom to Transistor (2005).
(
10.1017/CBO9781139164313
) - Guo, J. Carbon nanotube electronics: modeling, physics, and applications. Purdue University (2004).
Dates
Type | When |
---|---|
Created | 7 years, 4 months ago (April 11, 2018, 11:03 a.m.) |
Deposited | 1 month, 2 weeks ago (July 3, 2025, 11:53 a.m.) |
Indexed | 1 month, 2 weeks ago (July 4, 2025, 12:09 a.m.) |
Issued | 7 years, 4 months ago (April 16, 2018) |
Published | 7 years, 4 months ago (April 16, 2018) |
Published Online | 7 years, 4 months ago (April 16, 2018) |
@article{Brahma_2018, title={Scalability assessment of Group-IV mono-chalcogenide based tunnel FET}, volume={8}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-018-24209-1}, DOI={10.1038/s41598-018-24209-1}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Brahma, Madhuchhanda and Kabiraj, Arnab and Saha, Dipankar and Mahapatra, Santanu}, year={2018}, month=apr }