Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractWe show that the Dynamical Casimir Effect (DCE), realized on two multimode coplanar waveg-uide resonators, implements a gaussian boson sampler (GBS). The appropriate choice of the mirror acceleration that couples both resonators translates into the desired initial gaussian state and many-boson interference in a boson sampling network. In particular, we show that the proposed quantum simulator naturally performs a classically hard task, known as scattershot boson sampling. Our result unveils an unprecedented computational power of DCE, and paves the way for using DCE as a resource for quantum simulation.

Bibliography

Peropadre, B., Huh, J., & Sabín, C. (2018). Dynamical Casimir Effect for Gaussian Boson Sampling. Scientific Reports, 8(1).

Authors 3
  1. Borja Peropadre (first)
  2. Joonsuk Huh (additional)
  3. Carlos Sabín (additional)
References 40 Referenced 11
  1. Moore, G. T. Quantum theory of electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys 11, 269 (1970). (10.1063/1.1665432) / J. Math. Phys by GT Moore (1970)
  2. Wilson, C. M. et al. Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature 479, 376 (2011). (10.1038/nature10561) / Nature by CM Wilson (2011)
  3. Johansson, J. R., Johansson, G., Wilson, C. M., Delsing, P. & Nori, F. Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 87, 043804 (2013). (10.1103/PhysRevA.87.043804) / Phys. Rev. A by JR Johansson (2013)
  4. Sabín, C., Fuentes, I. & Johansson, J. Quantum discord in the dynamical Casimir effect. Phys. Rev. A 92, 012314 (2015). (10.1103/PhysRevA.92.012314) / Phys. Rev. A by C Sabín (2015)
  5. Sabín, C. & Adesso, G. Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015). (10.1103/PhysRevA.92.042107) / Phys. Rev. A by C Sabín (2015)
  6. Felicetti, S. et al. Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014). (10.1103/PhysRevLett.113.093602) / Phys. Rev. Lett. by S Felicetti (2014)
  7. Bruschi, D. E. et al. Towards universal quantum computation through relativistic motion. Sci. Rep. 6, 18349 (2016). (10.1038/srep18349) / Sci. Rep. by DE Bruschi (2016)
  8. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Proceedings of the 43rd annual ACM symposium on Theory of computing - STOC ‘11,333 (2011). (10.1145/1993636.1993682)
  9. Preskill, J. Quantum computing and the entanglement frontier in The theory of the quantum world (Proceedings of the 25th Solvay conference on Physics (World Scientific, 2012).
  10. Lund, A. P. et al. Boson Sampling from a Gaussian state. Phys. Rev. Lett 113, 100502 (2014). (10.1103/PhysRevLett.113.100502) / Phys. Rev. Lett by AP Lund (2014)
  11. Huh, J., Guerreschi, G. G., Peropadre, B. & McClean, J. R. & Aspuru-Guzik Boson sampling for molecular vibronic spectra. Nature Phot. 9, 615 (2015). (10.1038/nphoton.2015.153) / Nature Phot. by J Huh (2015)
  12. Shen, Y. et al. Quantum simulation of molecular spectroscopy in trapped-ion device. Preprint at https://arxiv.org/abs/1702.04859 (2017).
  13. Peropadre, B. et al. Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013). (10.1103/PhysRevB.87.134504) / Phys. Rev. B by B Peropadre (2013)
  14. Simoen, M. et al. Characterization of a multimode coplanar waveguide parametric amplifier. J. Appl. Phys. 118, 154501 (2015). (10.1063/1.4933265) / J. Appl. Phys. by M Simoen (2015)
  15. Svensson, I. M. MSc. thesis Chalmers University of Technology, 2012).
  16. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004). (10.1103/PhysRevA.69.062320) / Phys. Rev. A by A Blais (2004)
  17. Ji, J.-Y., Jung, H.-H., Park, J.-W. & Soh, K.-S. Production of photons by the parametric resonance in the dynamical Casimir effect. Phys. Rev. A 56, 4440 (1997). (10.1103/PhysRevA.56.4440) / Phys. Rev. A by J-Y Ji (1997)
  18. Ji, J.-Y., Jung, H.-H. & Soh, K.-S. Interference phenomena in the photon production between two oscillating walls. Phys. Rev. A 57, 4952 (1998). (10.1103/PhysRevA.57.4952) / Phys. Rev. A by J-Y Ji (1998)
  19. Bruschi, D. E., Louko, J., Faccio, D. & Fuentes, I. Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities. New J. Phys. 15, 073052 (2013). (10.1088/1367-2630/15/7/073052) / New J. Phys. by DE Bruschi (2013)
  20. Zakka- Bajjani, E. et al. Quantum superposition of a single microwave photon in two different ‘colour’ states. Nature Phys. 7, 599 (2011). (10.1038/nphys2035) / Nature Phys. by E Zakka- Bajjani (2011)
  21. Jerrum, M., Sinclair, A. & Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671 (2004). (10.1145/1008731.1008738) / J. ACM by M Jerrum (2004)
  22. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994). (10.1103/PhysRevLett.73.58) / Phys. Rev. Lett. by M Reck (1994)
  23. Peropadre, B., Aspuru-Guzik, A. & García-Ripoll, J. J. Equivalence between spin Hamiltonians and boson sampling. Phys. Rev. A 95, 032337 (2017). (10.1103/PhysRevA.95.032327) / Phys. Rev. A by B Peropadre (2017)
  24. Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444 (2014). (10.1038/nature13436) / Nature by L Sun (2014)
  25. Peropadre, B., Guerreschi, G. G., Huh, J. & Aspuru-Guzik, A. Proposal for Microwave Boson Sampling. Phys. Rev. Lett. 117, 140505 (2016). (10.1103/PhysRevLett.117.140505) / Phys. Rev. Lett. by B Peropadre (2016)
  26. Broome, M. A. et al. Photonic Boson Sampling in a Tunable Circuit. Science 339, 794 (2013). (10.1126/science.1231440) / Science by MA Broome (2013)
  27. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798 (2013). (10.1126/science.1231692) / Science by JB Spring (2013)
  28. Tillmann, M. et al. Experimental boson sampling. Nature Phot. 7, 540 (2013). (10.1038/nphoton.2013.102) / Nature Phot. by M Tillmann (2013)
  29. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Phot. 7, 545 (2013). (10.1038/nphoton.2013.112) / Nature Phot. by A Crespi (2013)
  30. Bentivegna, M. et al. Experimental scattershot boson sampling. Science Advances 1, e1400255 (2015). (10.1126/sciadv.1400255) / Science Advances by M Bentivegna (2015)
  31. McKay, D. C., Naik, R., Reinhold, P., Bishop, L. S. & Schuster, D. I. High-Contrast Qubit Interactions Using Multimode Cavity QED. Phys. Rev. Lett. 114, 080501 (2015). (10.1103/PhysRevLett.114.080501) / Phys. Rev. Lett. by DC McKay (2015)
  32. Bronn, N. T. et al. Fast, high-fidelity readout of multiple qubits. Journal of Physics: Conference Series 834, 012003 (2017). / Journal of Physics: Conference Series by NT Bronn (2017)
  33. Rahimi-Keshari, S., Lund, A. P. & Ralph, T. C. What can quantum optics say about complexity theory? Phys. Rev. Lett 114, 060501 (2015). (10.1103/PhysRevLett.114.060501) / Phys. Rev. Lett by S Rahimi-Keshari (2015)
  34. Rohde, P. P., Berry, D. W., Motes, K. R. & Dowling, J. P. A Quantum Optics Argument for the #P-hardness of a Class of Multidimensional Integrals. Preprint at https://arxiv.org/abs/1607.04960.
  35. Huh, J. & Yung, M.-H. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature. Sci. Rep. 7, 7462 (2017). (10.1038/s41598-017-07770-z) / Sci. Rep. by J Huh (2017)
  36. Sundaresan, N. M. et al. Beyond Strong Coupling in a Multimode Cavity. Phys. Rev. X 5, 021035 (2015). / Phys. Rev. X by NM Sundaresan (2015)
  37. Plourde, B. L. T. et al. Proc. SPIE 9500, 9500M (2015). / Proc. SPIE by BLT Plourde (2015)
  38. Macklin, C. et al. A nearquantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307 (2015). (10.1126/science.aaa8525) / Science by C Macklin (2015)
  39. Abdo, B., Schackert, F., Hatridge, M., Rigetti, C. & Devoret, M. App. Phys. Lett.  99, 162506 (2011). (10.1063/1.3653473)
  40. Abdo, B., Sliwa, K., Frunzio, L. & Devoret, M. Directional Amplification with a Josephson Circuit. Phys. Rev. X 3, 031001 (2013). / Phys. Rev. X by B Abdo (2013)
Dates
Type When
Created 7 years, 6 months ago (Feb. 22, 2018, 5:24 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 9:59 p.m.)
Indexed 1 year, 2 months ago (June 25, 2024, 1:53 a.m.)
Issued 7 years, 6 months ago (Feb. 28, 2018)
Published 7 years, 6 months ago (Feb. 28, 2018)
Published Online 7 years, 6 months ago (Feb. 28, 2018)
Funders 0

None

@article{Peropadre_2018, title={Dynamical Casimir Effect for Gaussian Boson Sampling}, volume={8}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-018-22086-2}, DOI={10.1038/s41598-018-22086-2}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Peropadre, Borja and Huh, Joonsuk and Sabín, Carlos}, year={2018}, month=feb }