Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractIn noncentrosymmetric crystals with broken inversion symmetry $${\boldsymbol{ {\mathcal I} }}$$ ℐ , the I-V (I: current, V: voltage) characteristic is generally expected to depend on the direction of I, which is known as nonreciprocal response and, for example, found in p-n junction. However, it is a highly nontrivial issue in translationally invariant systems since the time-reversal symmetry T plays an essential role, where the two states at crystal momenta k and −k are connected in the band structure. Therefore, it has been considered that the external magnetic field (B) or the magnetic order which breaks the T-symmetry is necessary to realize the nonreciprocal I-V characteristics, i.e., magnetochiral anisotropy. Here we theoretically show that the electron correlation in T-broken multi-band systems can induce nonreciprocal I-V characteristics without T-breaking. An analog of Onsager’s relation shows that nonreciprocal current response without T -breaking generally requires two effects: dissipation and interactions. By using nonequilibrium Green’s functions, we derive general formula of the nonreciprocal response for two-band systems with onsite interaction. The formula is applied to Rice-Mele model, a representative 1D model with inversion breaking, and some candidate materials are discussed. This finding offers a coherent understanding of the origin of nonreciprocal I-V characteristics, and will pave a way to design it.

Bibliography

Morimoto, T., & Nagaosa, N. (2018). Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation. Scientific Reports, 8(1).

Authors 2
  1. Takahiro Morimoto (first)
  2. Naoto Nagaosa (additional)
References 46 Referenced 43
  1. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994). (10.1103/RevModPhys.66.899) / Rev. Mod. Phys. by R Resta (1994)
  2. Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013). (10.1038/nature12622) / Nature by I Grinberg (2013)
  3. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). (10.1126/science.aaa0472) / Science by W Nie (2015)
  4. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). (10.1126/science.aaa2725) / Science by D Shi (2015)
  5. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015). (10.1126/science.aaa5333) / Science by DW de Quilettes (2015)
  6. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981). (10.1103/PhysRevB.23.5590) / Phys. Rev. B by R von Baltz (1981)
  7. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000). (10.1103/PhysRevB.61.5337) / Phys. Rev. B by JE Sipe (2000)
  8. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012). (10.1103/PhysRevLett.109.116601) / Phys. Rev. Lett. by SM Young (2012)
  9. Cook, A. M., Fregoso, B. M., De Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nature communications 8, 14176 (2017). (10.1038/ncomms14176) / Nature communications by AM Cook (2017)
  10. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Science Advances 2, e1501524 (2016). (10.1126/sciadv.1501524) / Science Advances by T Morimoto (2016)
  11. Boyd, R. W. Nonlinear optics. (Academic press, London, 2003). / Nonlinear optics by RW Boyd (2003)
  12. Bloembergen, N. Nonlinear optics. (World Scientific, Singapore, 1996). (10.1142/3046) / Nonlinear optics by N Bloembergen (1996)
  13. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nature Physics 13, 350–355 (2017). (10.1038/nphys3969) / Nature Physics by L Wu (2017)
  14. Christen, T. & Büttiker, M. Gauge-invariant nonlinear electric transport in mesoscopic conductors. EPL (Europhysics Letters) 35, 523 (1996). (10.1209/epl/i1996-00145-8) / EPL (Europhysics Letters) by T Christen (1996)
  15. Song, A. M. Formalism of nonlinear transport in mesoscopic conductors. Phys. Rev. B 59, 9806–9809 (1999). (10.1103/PhysRevB.59.9806) / Phys. Rev. B by AM Song (1999)
  16. Sánchez, D. & Büttiker, M. Magnetic-field asymmetry of nonlinear mesoscopic transport. Phys. Rev. Lett. 93, 106802 (2004). (10.1103/PhysRevLett.93.106802) / Phys. Rev. Lett. by D Sánchez (2004)
  17. Rikken, G. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997). (10.1038/37323) / Nature by G Rikken (1997)
  18. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001). (10.1103/PhysRevLett.87.236602) / Phys. Rev. Lett. by GLJA Rikken (2001)
  19. Krstić, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. L. J. A. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117 (2002). (10.1063/1.1523895)
  20. Rikken, G. L. J. A. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005). (10.1103/PhysRevLett.94.016601) / Phys. Rev. Lett. by GLJA Rikken (2005)
  21. Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014). (10.1038/ncomms4757) / Nat. Commun. by F Pop (2014)
  22. Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016). (10.1103/PhysRevLett.117.146603) / Phys. Rev. Lett. by T Morimoto (2016)
  23. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nature Physics 13, 578–583 (2017). (10.1038/nphys4056) / Nature Physics by T Ideue (2017)
  24. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Science Advances 3, e1602390 (2017). (10.1126/sciadv.1602390) / Science Advances by R Wakatsuki (2017)
  25. Onoda, S., Sugimoto, N. & Nagaosa, N. Theory of non-equilibirum states driven by constant electromagnetic fields non-commutative quantum mechanics in the Keldysh formalism. Progress of Theoretical Physics 116, 61 (2006). (10.1143/PTP.116.61) / Progress of Theoretical Physics by S Onoda (2006)
  26. Sugimoto, N., Onoda, S. & Nagaosa, N. Field-induced metal-insulator transition and switching phenomenon in correlated insulators. Phys. Rev. B 78, 155104 (2008). (10.1103/PhysRevB.78.155104) / Phys. Rev. B by N Sugimoto (2008)
  27. Tokura, Y., Okamoto, H., Koda, T., Mitani, T. & Saito, G. Nonlinear electric transport and switching phenomenon in the mixed-stack charge-transfer crystal tetrathiafulvalene-p-chloranil. Phys. Rev. B 38, 2215–2218 (1988). (10.1103/PhysRevB.38.2215) / Phys. Rev. B by Y Tokura (1988)
  28. Mitani, T. et al. Electric conductivity and phase diagram of a mixed-stack charge-transfer crystal: Tetrathiafulvalene-p-chloranil. Phys. Rev. B 35, 427–429 (1987). (10.1103/PhysRevB.35.427) / Phys. Rev. B by T Mitani (1987)
  29. Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010). (10.1103/PhysRevLett.105.026805) / Phys. Rev. Lett. by JE Moore (2010)
  30. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). (10.1103/PhysRevLett.115.216806) / Phys. Rev. Lett. by I Sodemann (2015)
  31. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016). (10.1103/PhysRevB.94.245121) / Phys. Rev. B by T Morimoto (2016)
  32. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). (10.1103/PhysRev.37.405) / Phys. Rev. by L Onsager (1931)
  33. Nagaosa, N. & Morimoto, T. Concept of quantum geometry in optoelectronic processes in solids: Application to solar cells. Advanced Materials 1603345 (2017). (10.1002/adma.201603345)
  34. Rammer, J. & Smith, H. Quantum field-theoretical methods in transport theory of metals. Rev. Mod. Phys. 58, 323–359 (1986). (10.1103/RevModPhys.58.323) / Rev. Mod. Phys. by J Rammer (1986)
  35. Jauho, A.-P., Wingreen, N. S. & Meir, Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994). (10.1103/PhysRevB.50.5528) / Phys. Rev. B by A-P Jauho (1994)
  36. Kohler, S., Lehmann, J. & Hänggi, P. Driven quantum transport on the nanoscale. Physics Reports 406, 379–443 (2005). (10.1016/j.physrep.2004.11.002) / Physics Reports by S Kohler (2005)
  37. Kamenev, A. Many-body theory of non-equilibrium systems. arXiv:0412296 (2004). (10.1016/S0924-8099(05)80045-9)
  38. Niu, Q., Thouless, D. J. & Wu, Y.-S. Quantized hall conductance as a topological invariant. Phys. Rev. B 31, 3372–3377 (1985). (10.1103/PhysRevB.31.3372) / Phys. Rev. B by Q Niu (1985)
  39. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982). (10.1103/PhysRevLett.49.1455) / Phys. Rev. Lett. by MJ Rice (1982)
  40. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980). (10.1103/PhysRevB.22.2099) / Phys. Rev. B by WP Su (1980)
  41. Nagaosa, N. & Takimoto, J. Theory of neutral-ionic transition in organic crystals. I. Monte Carlo simulation of modified Hubbard model. J. Phys. Soc. of Jpn. 55, 2735–2744 (1986). (10.1143/JPSJ.55.2735) / J. Phys. Soc. of Jpn. by N Nagaosa (1986)
  42. Onoda, S., Murakami, S. & Nagaosa, N. Topological nature of polarization and charge pumping in ferroelectrics. Phys. Rev. Lett. 93, 167602 (2004). (10.1103/PhysRevLett.93.167602) / Phys. Rev. Lett. by S Onoda (2004)
  43. Egami, T., Ishihara, S. & Tachiki, M. Lattice effect of strong electron correlation: Implication for ferroelectricity and superconductivity. Science 261, 1307–1310 (1993). (10.1126/science.261.5126.1307) / Science by T Egami (1993)
  44. Kim, K. W., Morimoto, T. & Nagaosa, N. Shift charge and spin photocurrents in dirac surface states of topological insulator. Phys. Rev. B 95, 035134 (2017). (10.1103/PhysRevB.95.035134) / Phys. Rev. B by KW Kim (2017)
  45. Aoki, H. et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014). (10.1103/RevModPhys.86.779) / Rev. Mod. Phys. by H Aoki (2014)
  46. Hanai, R., Littlewood, P. B. & Ohashi, Y. Non-equilibrium properties of a pumped-decaying Bose-condensed electron–hole gas in the BCS–BEC crossover region. Journal of Low Temperature Physics 183, 127–135 (2016). (10.1007/s10909-016-1552-6) / Journal of Low Temperature Physics by R Hanai (2016)
Dates
Type When
Created 7 years, 6 months ago (Feb. 8, 2018, 5:20 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 9:28 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 8:23 a.m.)
Issued 7 years, 6 months ago (Feb. 14, 2018)
Published 7 years, 6 months ago (Feb. 14, 2018)
Published Online 7 years, 6 months ago (Feb. 14, 2018)
Funders 0

None

@article{Morimoto_2018, title={Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation}, volume={8}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-018-20539-2}, DOI={10.1038/s41598-018-20539-2}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Morimoto, Takahiro and Nagaosa, Naoto}, year={2018}, month=feb }