Crossref journal-article
Springer Science and Business Media LLC
Scientific Reports (297)
Abstract

AbstractWe combined the group theory and data mining approach within the Organic Materials Database that leads to the prediction of stable Dirac-point nodes within the electronic band structure of three-dimensional organic crystals. We find a particular space group P212121 (#19) that is conducive to the Dirac nodes formation. We prove that nodes are a consequence of the orthorhombic crystal structure. Within the electronic band structure, two different kinds of nodes can be distinguished: 8-fold degenerate Dirac nodes protected by the crystalline symmetry and 4-fold degenerate Dirac nodes protected by band topology. Mining the Organic Materials Database, we present band structure calculations and symmetry analysis for 6 previously synthesized organic materials. In all these materials, the Dirac nodes are well separated within the energy and located near the Fermi surface, which opens up a possibility for their direct experimental observation.

Bibliography

Geilhufe, R. M., Borysov, S. S., Bouhon, A., & Balatsky, A. V. (2017). Data Mining for Three-Dimensional Organic Dirac Materials: Focus on Space Group 19. Scientific Reports, 7(1).

Authors 4
  1. R. Matthias Geilhufe (first)
  2. Stanislav S. Borysov (additional)
  3. Adrien Bouhon (additional)
  4. Alexander V. Balatsky (additional)
References 55 Referenced 27
  1. Wehling, T., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1–76 (2014). (10.1080/00018732.2014.927109) / Adv. Phys. by T Wehling (2014)
  2. Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010). (10.1080/00018732.2010.487978) / Adv. Phys. by D Abergel (2010)
  3. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007). (10.1103/PhysRevLett.98.106803) / Phys. Rev. Lett. by L Fu (2007)
  4. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012). (10.1038/nphys2442) / Nat. Phys. by Y Tanaka (2012)
  5. Geilhufe, M. et al. Effect of hydrostatic pressure and uniaxial strain on the electronic structure of Pb1−x Sn x Te. Phys. Rev. B 92, 235203 (2015). (10.1103/PhysRevB.92.235203) / Phys. Rev. B by M Geilhufe (2015)
  6. Geilhufe, R. M., Bouhon, A., Borysov, S. S. & Balatsky, A. V. Three-dimensional organic dirac-line materials due to nonsymmorphic symmetry: A data mining approach. Phys. Rev. B 95, 041103 (2017). (10.1103/PhysRevB.95.041103) / Phys. Rev. B by RM Geilhufe (2017)
  7. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806, doi:10.1103/PhysRevLett.115.036806 (2015). (10.1103/PhysRevLett.115.036806) / Phys. Rev. Lett. by Y Kim (2015)
  8. Yamakage, A., Yamakawa, Y., Tanaka, Y. & Okamoto, Y. Line-node dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn. 85, 013708, doi:10.7566/JPSJ.85.013708 (2016). (10.7566/JPSJ.85.013708) / J. Phys. Soc. Jpn. by A Yamakage (2016)
  9. Lv, B. et al. Experimental discovery of weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). / Phys. Rev. X by B Lv (2015)
  10. Katayama, S., Kobayashi, A. & Suzumura, Y. Pressure-induced zero-gap semiconducting state in organic conductor α-(BEDT-TTF)2I3 salt. J. Phys. Soc. Jpn. 75, 054705, doi:10.1143/JPSJ.75.054705 (2006). (10.1143/JPSJ.75.054705) / J. Phys. Soc. Jpn. by S Katayama (2006)
  11. Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. physica status solidi (a) 210, 9–43 (2013). (10.1002/pssa.201228310) / physica status solidi (a) by B Lüssem (2013)
  12. Wang, Z., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano letters 13, 2842–2845 (2013). (10.1021/nl401147u) / Nano letters by Z Wang (2013)
  13. Choji, T., Kobayashi, A. & Suzumura, Y. Zero-gap state in organic conductor α-(BEDT-TTF)2NH4Hg(SCN)4. J. Phys. Soc. Jpn. 80, 074712 (2011). (10.1143/JPSJ.80.074712) / J. Phys. Soc. Jpn. by T Choji (2011)
  14. Morinari, T. & Suzumura, Y. On the possible zero-gap state in organic conductor α-(BEDT-TSF)2I3 under pressure. J. Phys. Soc. Jpn. 83, 094701 (2014). (10.7566/JPSJ.83.094701) / J. Phys. Soc. Jpn. by T Morinari (2014)
  15. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871, doi:10.1103/Phys-Rev.136.B864 (1964). (10.1103/PhysRev.136.B864) / Phys. Rev. by P Hohenberg (1964)
  16. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138, doi:10.1103/PhysRev.140.A1133 (1965). (10.1103/PhysRev.140.A1133) / Phys. Rev. by W Kohn (1965)
  17. Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: An open-access online database for data mining. PloS one 12, e0171501 (2017). (10.1371/journal.pone.0171501) / PloS one by SS Borysov (2017)
  18. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803, doi:10.1103/PhysRevLett.115.126803 (2015). (10.1103/PhysRevLett.115.126803) / Phys. Rev. Lett. by SM Young (2015)
  19. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in ZrSiS. Nat. communications 7 (2016). (10.1038/ncomms11696)
  20. Yang, B.-J., Bojesen, T. A., Morimoto, T. & Furusaki, A. Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals. Phys. Rev. B 95, 075135 (2017). (10.1103/PhysRevB.95.075135)
  21. Zak, J. Method to obtain the character tables of nonsymmorphic space groups. J. Math. Phys. 1, 165–171 (1960). (10.1063/1.1703649) / J. Math. Phys. by J Zak (1960)
  22. Bradlyn, B. et al. Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals. Sci. 353, aaf5037 (2016). (10.1126/science.aaf5037)
  23. Herring, C. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365 (1937). (10.1103/PhysRev.52.365) / Phys. Rev. by C Herring (1937)
  24. Wieder, B. J. & Kane, C. Spin-orbit semimetals in the layer groups. Phys. Rev. B 94, 155108 (2016). (10.1103/PhysRevB.94.155108) / Phys. Rev. B by BJ Wieder (2016)
  25. Pinkerton, D. M., Banwell, M. G. & Willis, A. C. Chemoenzymatic access to versatile epoxyquinol synthons. Org. Lett. 11, 4290–4293, doi:10.1021/ol9016657 (2009). (10.1021/ol9016657) / Org. Lett. by DM Pinkerton (2009)
  26. Bae, J.-Y., Lee, H.-J., Youn, S.-H., Kwon, S.-H. & Cho, C.-W. Organocatalytic asymmetric synthesis of chiral pyrrolizines by cascade conjugate addition- aldol reactions. Org. letters 12, 4352–4355 (2010). (10.1021/ol101811c) / Org. letters by J-Y Bae (2010)
  27. Dong, L. et al. Asymmetric nitroallylation of arylboronic acids with nitroallyl acetates catalyzed by chiral rhodium complexes and its application in a concise total synthesis of optically pure (+)-γ-lycorane. Org. letters 7, 4285–4288 (2005). (10.1021/ol051795n) / Org. letters by L Dong (2005)
  28. Butin, A. V. et al. Furan ring opening–pyrrole ring closure: a new synthetic route to aryl (heteroaryl)-annulated pyrrolo [1, 2-a] [1, 4] diazepines. Org. & biomolecular chemistry 8, 3316–3327 (2010). (10.1039/c002994g) / Org. & biomolecular chemistry by AV Butin (2010)
  29. Šterk, D., Stephan, M. & Mohar, B. Highly enantioselective transfer hydrogenation of fluoroalkyl ketones. Org. letters 8, 5935–5938 (2006). (10.1021/ol062358r) / Org. letters by D Šterk (2006)
  30. Eloi, A. et al. Cationic planar chiral (η6-arene) mn (co) 3+ complexes: resolution, nmr study in chiral-oriented solvents, and applications to the enantioselective synthesis of 4-substituted cyclohexenones and (η6-phosphinoarene) mn (co) 3+ complexes. Organometallics 29, 3876–3886 (2010). (10.1021/om100564v) / Organometallics by A Eloi (2010)
  31. Pfeiffer, M. et al. Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4, 89–103, doi:10.1016/j.orgel.2003.08.004, High Efficiency Light Emitters (2003). (10.1016/j.orgel.2003.08.004)
  32. Zhou, X. et al. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl. Phys. Lett. 78, 410–412, doi:10.1063/1.1343849 (2001). (10.1063/1.1343849) / Appl. Phys. Lett. by X Zhou (2001)
  33. Blochwitz, J., Pfeiffer, M., Fritz, T. & Leo, K. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl. Phys. Lett. 73, 729–731, doi:10.1063/1.121982 (1998). (10.1063/1.121982) / Appl. Phys. Lett. by J Blochwitz (1998)
  34. Hoppe, H. & Sariciftci, N. S. Organic solar cells: An overview. J. Mater. Res 19, 1924–1945 (2004). (10.1557/JMR.2004.0252) / J. Mater. Res by H Hoppe (2004)
  35. Drechsel, J. et al. Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Appl. Phys. Lett. 86, 244102 (2005). (10.1063/1.1935771) / Appl. Phys. Lett. by J Drechsel (2005)
  36. Kim, G.-H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013). (10.1038/nmat3635) / Nat. Mater. by G-H Kim (2013)
  37. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. & Wondratschek, H. Bilbao crystallographic server. II. representations of crystallographic point groups and space groups. Acta Crystallogr. Sect. A: Foundations Crystallogr. 62, 115–128 (2006). (10.1107/S0108767305040286) / Acta Crystallogr. Sect. A: Foundations Crystallogr. by MI Aroyo (2006)
  38. Wieder, B. J., Kim, Y., Rappe, A. & Kane, C. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016). (10.1103/PhysRevLett.116.186402) / Phys. Rev. Lett. by BJ Wieder (2016)
  39. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (I). proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981). (10.1016/0550-3213(81)90361-8) / Nucl. Phys. B by HB Nielsen (1981)
  40. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (II). intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981). (10.1016/0550-3213(81)90524-1) / Nucl. Phys. B by HB Nielsen (1981)
  41. Bouhon, A. & Black-Schaffer, A. Global band topology of simple and double Dirac-point semimetals. Phys. Rev. B 95, 241101 (2017). (10.1103/PhysRevB.95.241101) / Phys. Rev. B by A Bouhon (2017)
  42. Triola, C., Zhu, J.-X., Migliori, A. & Balatsky, A. V. Many-body instabilities and mass generation in slow Dirac materials. Phys. Rev. B 92, 045401 (2015). (10.1103/PhysRevB.92.045401) / Phys. Rev. B by C Triola (2015)
  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  44. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990). (10.1103/PhysRevB.41.7892) / Phys. Rev. B by D Vanderbilt (1990)
  45. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Physics: Condens. Matter 6, 8245 (1994). / J. Physics: Condens. Matter by G Kresse (1994)
  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561, doi:10.1103/PhysRevB.47.558 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  49. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Physics: Condens. Matter 21, 395502 (2009). / J. Physics: Condens. Matter by P Giannozzi (2009)
  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. review letters 77, 3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. review letters by JP Perdew (1996)
  51. Merkys, A. et al. Cod::CIF::Parser: an error-correcting CIF parser for the perl language. J. applied crystallography 49 (2016). (10.1107/S1600576715022396)
  52. Gražulis, S., Merkys, A., Vaitkus, A. & Okulič-Kazarinas, M. Computing stoichiometric molecular composition from crystal structures. J. applied crystallography 48, 85–91 (2015). (10.1107/S1600576714025904) / J. applied crystallography by S Gražulis (2015)
  53. Gražulis, S. et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic acids research 40, D420–D427 (2012). (10.1093/nar/gkr900) / Nucleic acids research by S Gražulis (2012)
  54. Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319, doi:j.commatsci.2012.10.028 (2013). (10.1016/j.commatsci.2012.10.028)
  55. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
Dates
Type When
Created 8 years ago (July 31, 2017, 6:59 a.m.)
Deposited 2 years, 8 months ago (Dec. 23, 2022, 3 a.m.)
Indexed 3 weeks ago (Aug. 6, 2025, 8:52 a.m.)
Issued 8 years ago (Aug. 4, 2017)
Published 8 years ago (Aug. 4, 2017)
Published Online 8 years ago (Aug. 4, 2017)
Funders 0

None

@article{Geilhufe_2017, title={Data Mining for Three-Dimensional Organic Dirac Materials: Focus on Space Group 19}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-017-07374-7}, DOI={10.1038/s41598-017-07374-7}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Geilhufe, R. Matthias and Borysov, Stanislav S. and Bouhon, Adrien and Balatsky, Alexander V.}, year={2017}, month=aug }