Abstract
AbstractWe combined the group theory and data mining approach within the Organic Materials Database that leads to the prediction of stable Dirac-point nodes within the electronic band structure of three-dimensional organic crystals. We find a particular space group P212121 (#19) that is conducive to the Dirac nodes formation. We prove that nodes are a consequence of the orthorhombic crystal structure. Within the electronic band structure, two different kinds of nodes can be distinguished: 8-fold degenerate Dirac nodes protected by the crystalline symmetry and 4-fold degenerate Dirac nodes protected by band topology. Mining the Organic Materials Database, we present band structure calculations and symmetry analysis for 6 previously synthesized organic materials. In all these materials, the Dirac nodes are well separated within the energy and located near the Fermi surface, which opens up a possibility for their direct experimental observation.
Authors
4
- R. Matthias Geilhufe (first)
- Stanislav S. Borysov (additional)
- Adrien Bouhon (additional)
- Alexander V. Balatsky (additional)
References
55
Referenced
27
-
Wehling, T., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys.
63, 1–76 (2014).
(
10.1080/00018732.2014.927109
) / Adv. Phys. by T Wehling (2014) -
Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys.
59, 261–482 (2010).
(
10.1080/00018732.2010.487978
) / Adv. Phys. by D Abergel (2010) -
Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett.
98, 106803 (2007).
(
10.1103/PhysRevLett.98.106803
) / Phys. Rev. Lett. by L Fu (2007) -
Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys.
8, 800–803 (2012).
(
10.1038/nphys2442
) / Nat. Phys. by Y Tanaka (2012) -
Geilhufe, M. et al. Effect of hydrostatic pressure and uniaxial strain on the electronic structure of Pb1−x
Sn
x
Te. Phys. Rev. B
92, 235203 (2015).
(
10.1103/PhysRevB.92.235203
) / Phys. Rev. B by M Geilhufe (2015) -
Geilhufe, R. M., Bouhon, A., Borysov, S. S. & Balatsky, A. V. Three-dimensional organic dirac-line materials due to nonsymmorphic symmetry: A data mining approach. Phys. Rev. B
95, 041103 (2017).
(
10.1103/PhysRevB.95.041103
) / Phys. Rev. B by RM Geilhufe (2017) -
Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett.
115, 036806, doi:10.1103/PhysRevLett.115.036806 (2015).
(
10.1103/PhysRevLett.115.036806
) / Phys. Rev. Lett. by Y Kim (2015) -
Yamakage, A., Yamakawa, Y., Tanaka, Y. & Okamoto, Y. Line-node dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn.
85, 013708, doi:10.7566/JPSJ.85.013708 (2016).
(
10.7566/JPSJ.85.013708
) / J. Phys. Soc. Jpn. by A Yamakage (2016) - Lv, B. et al. Experimental discovery of weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). / Phys. Rev. X by B Lv (2015)
-
Katayama, S., Kobayashi, A. & Suzumura, Y. Pressure-induced zero-gap semiconducting state in organic conductor α-(BEDT-TTF)2I3 salt. J. Phys. Soc. Jpn.
75, 054705, doi:10.1143/JPSJ.75.054705 (2006).
(
10.1143/JPSJ.75.054705
) / J. Phys. Soc. Jpn. by S Katayama (2006) -
Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. physica status solidi (a)
210, 9–43 (2013).
(
10.1002/pssa.201228310
) / physica status solidi (a) by B Lüssem (2013) -
Wang, Z., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano letters
13, 2842–2845 (2013).
(
10.1021/nl401147u
) / Nano letters by Z Wang (2013) -
Choji, T., Kobayashi, A. & Suzumura, Y. Zero-gap state in organic conductor α-(BEDT-TTF)2NH4Hg(SCN)4. J. Phys. Soc. Jpn.
80, 074712 (2011).
(
10.1143/JPSJ.80.074712
) / J. Phys. Soc. Jpn. by T Choji (2011) -
Morinari, T. & Suzumura, Y. On the possible zero-gap state in organic conductor α-(BEDT-TSF)2I3 under pressure. J. Phys. Soc. Jpn.
83, 094701 (2014).
(
10.7566/JPSJ.83.094701
) / J. Phys. Soc. Jpn. by T Morinari (2014) -
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev.
136, B864–B871, doi:10.1103/Phys-Rev.136.B864 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. by P Hohenberg (1964) -
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
140, A1133–A1138, doi:10.1103/PhysRev.140.A1133 (1965).
(
10.1103/PhysRev.140.A1133
) / Phys. Rev. by W Kohn (1965) -
Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: An open-access online database for data mining. PloS one
12, e0171501 (2017).
(
10.1371/journal.pone.0171501
) / PloS one by SS Borysov (2017) -
Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett.
115, 126803, doi:10.1103/PhysRevLett.115.126803 (2015).
(
10.1103/PhysRevLett.115.126803
) / Phys. Rev. Lett. by SM Young (2015) -
Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in ZrSiS. Nat. communications
7 (2016).
(
10.1038/ncomms11696
) -
Yang, B.-J., Bojesen, T. A., Morimoto, T. & Furusaki, A. Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals. Phys. Rev. B
95, 075135 (2017).
(
10.1103/PhysRevB.95.075135
) -
Zak, J. Method to obtain the character tables of nonsymmorphic space groups. J. Math. Phys.
1, 165–171 (1960).
(
10.1063/1.1703649
) / J. Math. Phys. by J Zak (1960) -
Bradlyn, B. et al. Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals. Sci. 353, aaf5037 (2016).
(
10.1126/science.aaf5037
) -
Herring, C. Accidental degeneracy in the energy bands of crystals. Phys. Rev.
52, 365 (1937).
(
10.1103/PhysRev.52.365
) / Phys. Rev. by C Herring (1937) -
Wieder, B. J. & Kane, C. Spin-orbit semimetals in the layer groups. Phys. Rev. B
94, 155108 (2016).
(
10.1103/PhysRevB.94.155108
) / Phys. Rev. B by BJ Wieder (2016) -
Pinkerton, D. M., Banwell, M. G. & Willis, A. C. Chemoenzymatic access to versatile epoxyquinol synthons. Org. Lett.
11, 4290–4293, doi:10.1021/ol9016657 (2009).
(
10.1021/ol9016657
) / Org. Lett. by DM Pinkerton (2009) -
Bae, J.-Y., Lee, H.-J., Youn, S.-H., Kwon, S.-H. & Cho, C.-W. Organocatalytic asymmetric synthesis of chiral pyrrolizines by cascade conjugate addition- aldol reactions. Org. letters
12, 4352–4355 (2010).
(
10.1021/ol101811c
) / Org. letters by J-Y Bae (2010) -
Dong, L. et al. Asymmetric nitroallylation of arylboronic acids with nitroallyl acetates catalyzed by chiral rhodium complexes and its application in a concise total synthesis of optically pure (+)-γ-lycorane. Org. letters
7, 4285–4288 (2005).
(
10.1021/ol051795n
) / Org. letters by L Dong (2005) -
Butin, A. V. et al. Furan ring opening–pyrrole ring closure: a new synthetic route to aryl (heteroaryl)-annulated pyrrolo [1, 2-a] [1, 4] diazepines. Org. & biomolecular chemistry
8, 3316–3327 (2010).
(
10.1039/c002994g
) / Org. & biomolecular chemistry by AV Butin (2010) -
Šterk, D., Stephan, M. & Mohar, B. Highly enantioselective transfer hydrogenation of fluoroalkyl ketones. Org. letters
8, 5935–5938 (2006).
(
10.1021/ol062358r
) / Org. letters by D Šterk (2006) -
Eloi, A. et al. Cationic planar chiral (η6-arene) mn (co) 3+ complexes: resolution, nmr study in chiral-oriented solvents, and applications to the enantioselective synthesis of 4-substituted cyclohexenones and (η6-phosphinoarene) mn (co) 3+ complexes. Organometallics
29, 3876–3886 (2010).
(
10.1021/om100564v
) / Organometallics by A Eloi (2010) -
Pfeiffer, M. et al. Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4, 89–103, doi:10.1016/j.orgel.2003.08.004, High Efficiency Light Emitters (2003).
(
10.1016/j.orgel.2003.08.004
) -
Zhou, X. et al. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl. Phys. Lett.
78, 410–412, doi:10.1063/1.1343849 (2001).
(
10.1063/1.1343849
) / Appl. Phys. Lett. by X Zhou (2001) -
Blochwitz, J., Pfeiffer, M., Fritz, T. & Leo, K. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl. Phys. Lett.
73, 729–731, doi:10.1063/1.121982 (1998).
(
10.1063/1.121982
) / Appl. Phys. Lett. by J Blochwitz (1998) -
Hoppe, H. & Sariciftci, N. S. Organic solar cells: An overview. J. Mater. Res
19, 1924–1945 (2004).
(
10.1557/JMR.2004.0252
) / J. Mater. Res by H Hoppe (2004) -
Drechsel, J. et al. Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Appl. Phys. Lett.
86, 244102 (2005).
(
10.1063/1.1935771
) / Appl. Phys. Lett. by J Drechsel (2005) -
Kim, G.-H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater.
12, 719–723 (2013).
(
10.1038/nmat3635
) / Nat. Mater. by G-H Kim (2013) -
Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. & Wondratschek, H. Bilbao crystallographic server. II. representations of crystallographic point groups and space groups. Acta Crystallogr. Sect. A: Foundations Crystallogr.
62, 115–128 (2006).
(
10.1107/S0108767305040286
) / Acta Crystallogr. Sect. A: Foundations Crystallogr. by MI Aroyo (2006) -
Wieder, B. J., Kim, Y., Rappe, A. & Kane, C. Double Dirac semimetals in three dimensions. Phys. Rev. Lett.
116, 186402 (2016).
(
10.1103/PhysRevLett.116.186402
) / Phys. Rev. Lett. by BJ Wieder (2016) -
Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (I). proof by homotopy theory. Nucl. Phys. B
185, 20–40 (1981).
(
10.1016/0550-3213(81)90361-8
) / Nucl. Phys. B by HB Nielsen (1981) -
Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice: (II). intuitive topological proof. Nucl. Phys. B
193, 173–194 (1981).
(
10.1016/0550-3213(81)90524-1
) / Nucl. Phys. B by HB Nielsen (1981) -
Bouhon, A. & Black-Schaffer, A. Global band topology of simple and double Dirac-point semimetals. Phys. Rev. B
95, 241101 (2017).
(
10.1103/PhysRevB.95.241101
) / Phys. Rev. B by A Bouhon (2017) -
Triola, C., Zhu, J.-X., Migliori, A. & Balatsky, A. V. Many-body instabilities and mass generation in slow Dirac materials. Phys. Rev. B
92, 045401 (2015).
(
10.1103/PhysRevB.92.045401
) / Phys. Rev. B by C Triola (2015) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B
50, 17953 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B
41, 7892 (1990).
(
10.1103/PhysRevB.41.7892
) / Phys. Rev. B by D Vanderbilt (1990) - Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Physics: Condens. Matter 6, 8245 (1994). / J. Physics: Condens. Matter by G Kresse (1994)
-
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
47, 558–561, doi:10.1103/PhysRevB.47.558 (1993).
(
10.1103/PhysRevB.47.558
) / Phys. Rev. B by G Kresse (1993) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B
54, 11169 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B
59, 1758 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) - Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Physics: Condens. Matter 21, 395502 (2009). / J. Physics: Condens. Matter by P Giannozzi (2009)
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. review letters
77, 3865 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. review letters by JP Perdew (1996) -
Merkys, A. et al. Cod::CIF::Parser: an error-correcting CIF parser for the perl language. J. applied crystallography
49 (2016).
(
10.1107/S1600576715022396
) -
Gražulis, S., Merkys, A., Vaitkus, A. & Okulič-Kazarinas, M. Computing stoichiometric molecular composition from crystal structures. J. applied crystallography
48, 85–91 (2015).
(
10.1107/S1600576714025904
) / J. applied crystallography by S Gražulis (2015) -
Gražulis, S. et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic acids research
40, D420–D427 (2012).
(
10.1093/nar/gkr900
) / Nucleic acids research by S Gražulis (2012) -
Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319, doi:j.commatsci.2012.10.028 (2013).
(
10.1016/j.commatsci.2012.10.028
) -
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B
13, 5188 (1976).
(
10.1103/PhysRevB.13.5188
) / Phys. Rev. B by HJ Monkhorst (1976)
@article{Geilhufe_2017, title={Data Mining for Three-Dimensional Organic Dirac Materials: Focus on Space Group 19}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-017-07374-7}, DOI={10.1038/s41598-017-07374-7}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Geilhufe, R. Matthias and Borysov, Stanislav S. and Bouhon, Adrien and Balatsky, Alexander V.}, year={2017}, month=aug }