Abstract
AbstractDomain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 1011 Am−2, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.
Bibliography
Lepadatu, S., Saarikoski, H., Beacham, R., Benitez, M. J., Moore, T. A., Burnell, G., Sugimoto, S., Yesudas, D., Wheeler, M. C., Miguel, J., Dhesi, S. S., McGrouther, D., McVitie, S., Tatara, G., & Marrows, C. H. (2017). Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion. Scientific Reports, 7(1).
Authors
15
- Serban Lepadatu (first)
- Henri Saarikoski (additional)
- Robert Beacham (additional)
- Maria Jose Benitez (additional)
- Thomas A. Moore (additional)
- Gavin Burnell (additional)
- Satoshi Sugimoto (additional)
- Daniel Yesudas (additional)
- May C. Wheeler (additional)
- Jorge Miguel (additional)
- Sarnjeet S. Dhesi (additional)
- Damien McGrouther (additional)
- Stephen McVitie (additional)
- Gen Tatara (additional)
- Christopher H. Marrows (additional)
References
60
Referenced
30
-
Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445, doi:10.1103/PhysRevLett.57.2442 (1986).
(
10.1103/PhysRevLett.57.2442
) / Phys. Rev. Lett. by P Grünberg (1986) -
Parkin, S., More, N. & Roche, K. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307, doi:10.1103/PhysRevLett.64.2304 (1990).
(
10.1103/PhysRevLett.64.2304
) / Phys. Rev. Lett. by S Parkin (1990) -
Steadman, P. et al. Exchange bias in spin-engineered double superlattices. Phys. Rev. Lett. 89, 077201, doi:10.1103/PhysRevLett.89.077201 (2002).
(
10.1103/PhysRevLett.89.077201
) / Phys. Rev. Lett. by P Steadman (2002) -
Pinarbasi, M. et al. 12 Gb/in2 recording demonstration with SV read heads and conventional narrow pole-tip write heads. IEEE Trans. Magn. 35, 689–694, doi:10.1109/20.750629 (1999).
(
10.1109/20.750629
) / IEEE Trans. Magn. by M Pinarbasi (1999) -
Slaughter, J. et al. High speed toggle MRAM with MgO-based tunnel junctions. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International. 873 (2005).
(
10.1109/IEDM.2005.1609496
) -
Boulle, O., Malinowski, G. & Kläui, M. Current-induced domain wall motion in nanoscale ferromagnetic elements. Materials Science & Engineering R 72, 159 (2011).
(
10.1016/j.mser.2011.04.001
) / Materials Science & Engineering R by O Boulle (2011) -
Parkin, S. & Yang, S.-H. Memory on the racetrack. Nature Nano 10, 195–198, doi:10.1038/nnano.2015.41 (2015).
(
10.1038/nnano.2015.41
) / Nature Nano by S Parkin (2015) -
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–92, doi:10.1126/science.1108813 (2005).
(
10.1126/science.1108813
) / Science by DA Allwood (2005) -
Xu, P. et al. An all-metallic logic gate based on current-driven domain wall motion. Nature Nano 3, 97–100, doi:10.1038/nnano.2008.1 (2008).
(
10.1038/nnano.2008.1
) / Nature Nano by P Xu (2008) -
Diegel, M., Glathe, S., Mattheis, R., Scherzinger, M. & Halder, E. A new four bit magnetic domain wall based multiturn counter. IEEE Trans. Magn. 45, 3792–3795, doi:10.1109/TMAG.2009.2024426 (2009).
(
10.1109/TMAG.2009.2024426
) / IEEE Trans. Magn. by M Diegel (2009) -
Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205, doi:10.1103/PhysRevLett.92.077205 (2004).
(
10.1103/PhysRevLett.92.077205
) / Phys. Rev. Lett. by A Yamaguchi (2004) -
Beach, G., Knutson, C., Nistor, C., Tsoi, M. & Erskine, J. Nonlinear domain-wall velocity enhancement by spin-polarized electric current. Phys. Rev. Lett. 97, 057203, doi:10.1103/PhysRevLett.97.057203 (2006).
(
10.1103/PhysRevLett.97.057203
) / Phys. Rev. Lett. by G Beach (2006) -
Hayashi, M., Thomas, L., Rettner, C., Moryia, R. & Parkin, S. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nature Phys 3, 21–25, doi:10.1038/nphys464 (2007).
(
10.1038/nphys464
) / Nature Phys by M Hayashi (2007) -
Meier, G. et al. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys. Rev. Lett. 98, 187202, doi:10.1103/PhysRevLett.98.187202 (2007).
(
10.1103/PhysRevLett.98.187202
) / Phys. Rev. Lett. by G Meier (2007) -
Lepadatu, S., Vanhaverbeke, A., Atkinson, D., Allenspach, R. & Marrows, C. H. Dependence of domain-wall depinning threshold current on pinning profile. Phys. Rev. Lett. 102, 127203, doi:10.1103/PhysRevLett.102.127203 (2009).
(
10.1103/PhysRevLett.102.127203
) / Phys. Rev. Lett. by S Lepadatu (2009) -
McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169, doi:10.1109/20.619698 (1997).
(
10.1109/20.619698
) / IEEE Trans. Magn. by RD McMichael (1997) -
Nakatani, Y., Thiaville, A. & Miltat, J. Head-to-head domain walls in soft nano-strips: a refined phase diagram. J. Magn. Magn. Mater. 290–291, 750–753, doi:10.1016/j.jmmm.2004.11.355 (2005).
(
10.1016/j.jmmm.2004.11.355
) / J. Magn. Magn. Mater. by Y Nakatani (2005) -
Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater 13, 11–20, doi:10.1038/nmat3823 (2014).
(
10.1038/nmat3823
) / Nature Mater by N Locatelli (2014) -
Lepadatu, S. et al. Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy. Phys. Rev. B 79, 094402, doi:10.1103/PhysRevB.79.094402 (2009).
(
10.1103/PhysRevB.79.094402
) / Phys. Rev. B by S Lepadatu (2009) -
Heyne, L. et al. Geometry-dependent scaling of critical current densities for current-induced domain wall motion and transformations. Phys. Rev. B 80, 184405, doi:10.1103/PhysRevB.80.184405 (2009).
(
10.1103/PhysRevB.80.184405
) / Phys. Rev. B by L Heyne (2009) -
Kläui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601, doi:10.1103/PhysRevLett.95.026601 (2005).
(
10.1103/PhysRevLett.95.026601
) / Phys. Rev. Lett. by M Kläui (2005) -
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194, doi:10.1126/science.1145799 (2008).
(
10.1126/science.1145799
) / Science by SSP Parkin (2008) -
Thiaville, A., Rohart, S., Jué, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002, doi:10.1209/0295-5075/100/57002 (2012).
(
10.1209/0295-5075/100/57002
) / Europhys. Lett. by A Thiaville (2012) -
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mat 12, 611–616, doi:10.1038/nmat3675 (2013).
(
10.1038/nmat3675
) / Nature Mat by S Emori (2013) -
Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. P. Chiral spin torque at magnetic domain walls. Nature Nano 8, 527–533, doi:10.1038/nnano.2013.102 (2013).
(
10.1038/nnano.2013.102
) / Nature Nano by K-S Ryu (2013) -
Yang, S. H., Ryu, K. S. & Parkin, S. S. P. Domain-wall velocities of up to 750 ms−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotech 10, 221226 (2015).
(
10.1038/nnano.2014.324
) / Nature Nanotech by SH Yang (2015) -
Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Current-driven dynamics of coupled domain walls in a synthetic antiferromagnet. Phys. Rev. B 90, 094411, doi:10.1103/PhysRevB.90.094411 (2014).
(
10.1103/PhysRevB.90.094411
) / Phys. Rev. B by H Saarikoski (2014) -
Koyama, T. et al. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Mater 10, 194–197, doi:10.1038/nmat2961 (2011).
(
10.1038/nmat2961
) / Nature Mater by T Koyama (2011) -
Fruchart, O. & Diény, B. Magnetostatics of synthetic ferrimagnet elements. J. Magn. Magn. Mater. 324, 365–368, doi:10.1016/j.jmmm.2011.07.020 (2012).
(
10.1016/j.jmmm.2011.07.020
) / J. Magn. Magn. Mater. by O Fruchart (2012) -
Schrefl, T., Fidler, J., Kirk, K. & Chapman, J. Domain structures and switching mechanisms in patterned magnetic elements. J. Magn. Magn. Mater. 175, 193–204 (1997).
(
10.1016/S0304-8853(97)00156-X
) / J. Magn. Magn. Mater. by T Schrefl (1997) -
Benitez, M. J. et al. Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlO x trilayer. Nature. Comm 6, 8957, doi:10.1038/ncomms9957 (2015).
(
10.1038/ncomms9957
) / Nature. Comm by MJ Benitez (2015) -
Hellwig, O., Berger, A. & Fullerton, E. Domain walls in antiferromagnetically coupled multilayer films. Phys. Rev. Lett. 91, 197203, doi:10.1103/PhysRevLett.91.197203 (2003).
(
10.1103/PhysRevLett.91.197203
) / Phys. Rev. Lett. by O Hellwig (2003) -
Benitez, M. J. et al. Engineering magnetic domain-wall structure in permalloy nanowires. Phys. Rev. Applied 3, 034008, doi:10.1103/PhysRevApplied.3.034008 (2015).
(
10.1103/PhysRevApplied.3.034008
) / Phys. Rev. Applied by MJ Benitez (2015) -
Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601, doi:10.1103/PhysRevLett.92.086601 (2004).
(
10.1103/PhysRevLett.92.086601
) / Phys. Rev. Lett. by G Tatara (2004) -
Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281, doi:10.1016/j.jmmm.2007.12.021 (2008).
(
10.1016/j.jmmm.2007.12.021
) / J. Magn. Magn. Mater. by GSD Beach (2008) -
Yoshimura, Y. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction. Nature Phys 12, 157161–161, doi:10.1038/nphys3535 (2015).
(
10.1038/nphys3535
) / Nature Phys by Y Yoshimura (2015) -
Lepadatu, S. et al. Domain-wall pinning, nonadiabatic spin-transfer torque, and spin-current polarization in permalloy wires doped with vanadium. Phys. Rev. B 81, 020413, doi:10.1103/PhysRevB.81.020413 (2010).
(
10.1103/PhysRevB.81.020413
) / Phys. Rev. B by S Lepadatu (2010) -
Sekiguchi, K. et al. Time-domain measurement of current-induced spin wave dynamics. Phys. Rev. Lett. 108, 017203, doi:10.1103/PhysRevLett.108.017203 (2012).
(
10.1103/PhysRevLett.108.017203
) / Phys. Rev. Lett. by K Sekiguchi (2012) -
Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996, doi:10.1209/epl/i2004-10452-6 (2005).
(
10.1209/epl/i2004-10452-6
) / Europhys. Lett. by A Thiaville (2005) -
Tatara, G., Kohno, H. & Shibata, J. Microscopic approach to current-driven domain wall dynamics. Phys. Rep 468, 213–301, doi:10.1016/j.physrep.2008.07.003 (2008).
(
10.1016/j.physrep.2008.07.003
) / Phys. Rep by G Tatara (2008) -
Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204, doi:10.1103/PhysRevLett.93.127204 (2004).
(
10.1103/PhysRevLett.93.127204
) / Phys. Rev. Lett. by S Zhang (2004) -
DuttaGupta, S. et al. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Phys 12, 333–336, doi:10.1038/nphys3593 (2016).
(
10.1038/nphys3593
) / Nature Phys by S DuttaGupta (2016) -
Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208, doi:10.1103/PhysRevLett.99.217208 (2007).
(
10.1103/PhysRevLett.99.217208
) / Phys. Rev. Lett. by PJ Metaxas (2007) -
Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204, doi:10.1103/PhysRevLett.98.037204 (2007).
(
10.1103/PhysRevLett.98.037204
) / Phys. Rev. Lett. by M Hayashi (2007) -
Walowski, J. et al. Energy equilibration processes of electrons, magnons, and phonons at the femtosecond time scale. Phys. Rev. Lett. 101, 237401, doi:10.1103/PhysRevLett.101.237401 (2008).
(
10.1103/PhysRevLett.101.237401
) / Phys. Rev. Lett. by J Walowski (2008) -
Weindler, T. et al. Magnetic damping: Domain wall dynamics versus local ferromagnetic resonance. Phys. Rev. Lett. 113, 237204, doi:10.1103/PhysRevLett.113.237204 (2014).
(
10.1103/PhysRevLett.113.237204
) / Phys. Rev. Lett. by T Weindler (2014) -
Rantschler, J., Ding, Y., Byeon, S.-C. & Alexander, C. Jr. Microstructure and damping in FeTiN and CoFe films. J. Appl. Phys. 93, 6671–6673, doi:10.1063/1.1556099 (2003).
(
10.1063/1.1556099
) / J. Appl. Phys. by J Rantschler (2003) -
Schoen, M. A. W. et al. Ultra-low magnetic damping of a metallic ferromagnet. Nature Physics 12, 839–842, doi:10.1038/nphys3770 (2016).
(
10.1038/nphys3770
) / Nature Physics by MAW Schoen (2016) -
Eltschka, M. et al. Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics. Phys. Rev. Lett. 105, 056601, doi:10.1103/PhysRevLett.105.056601 (2010).
(
10.1103/PhysRevLett.105.056601
) / Phys. Rev. Lett. by M Eltschka (2010) -
Heyne, L. et al. Direct determination of large spin-torque nonadiabaticity in vortex core dynamics. Phys. Rev. Lett. 105, 187203, doi:10.1103/PhysRevLett.105.187203 (2010).
(
10.1103/PhysRevLett.105.187203
) / Phys. Rev. Lett. by L Heyne (2010) -
Pollard, S. D. et al. Direct dynamic imaging of non-adiabatic spin torque effects. Nature Comm 3, 1028, doi:10.1038/ncomms2025 (2012).
(
10.1038/ncomms2025
) / Nature Comm by SD Pollard (2012) -
Rößler, S. et al. Nonadiabatic spin-transfer torque of magnetic vortex structures in a permalloy square. Phys. Rev. B 89, 174426, doi:10.1103/PhysRevB.89.174426 (2014).
(
10.1103/PhysRevB.89.174426
) / Phys. Rev. B by S Rößler (2014) -
Claudio-Gonzalez, D., Thiaville, A. & Miltat, J. Domain wall dynamics under non-local spin-transfer torque. Phys. Rev. Lett. 108, 227208, doi:10.1103/PhysRevLett.108.227208 (2012).
(
10.1103/PhysRevLett.108.227208
) / Phys. Rev. Lett. by D Claudio-Gonzalez (2012) -
Fukami, S., Yamanouchi, M., Ikeda, S. & Ohno, H. Depinning probability of a magnetic domain wall in nanowires by spin-polarized currents. Nature Commun 4, 2293, doi:10.1038/ncomms3293 (2013).
(
10.1038/ncomms3293
) / Nature Commun by S Fukami (2013) - Parkin, S., Thomas, L. & Yang, S. Domain wall motion in perpendicularly magnetized wires having magnetic multilayers with engineered interfaces US Patent 8,638,601 (2014).
-
Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nature Nano 8, 587–93, doi:10.1038/nnano.2013.145 (2013).
(
10.1038/nnano.2013.145
) / Nature Nano by K Garello (2013) -
Zhu, M., Dennis, C. L. & McMichael, R. D. Temperature dependence of magnetization drift velocity and current polarization in Ni80Fe20 by spin-wave doppler measurements. Phys. Rev. B 81, 140407, doi:10.1103/PhysRevB.81.140407 (2010).
(
10.1103/PhysRevB.81.140407
) / Phys. Rev. B by M Zhu (2010) -
Sugimoto, S., Rosamond, M., Linfield, E. H. & Marrows, C. H. Observation of spin-wave Doppler shift in Co90Fe10/Ru micro-strips for evaluating spin polarization. Appl. Phys. Lett. 109, 112405, doi:10.1063/1.4962835 (2016).
(
10.1063/1.4962835
) / Appl. Phys. Lett. by S Sugimoto (2016) -
McVitie, S. et al. Aberration corrected Lorentz scanning transmission electron microscopy. Ultramicroscopy 152, 57–62, doi:10.1016/j.ultramic.2015.01.003 (2015).
(
10.1016/j.ultramic.2015.01.003
) / Ultramicroscopy by S McVitie (2015) -
Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434, doi:10.1063/1.367113 (1997).
(
10.1063/1.367113
) / J. Appl. Phys. by A Aharoni (1997)
Dates
Type | When |
---|---|
Created | 8 years, 3 months ago (May 3, 2017, 10:52 a.m.) |
Deposited | 2 months, 1 week ago (June 17, 2025, 11:59 p.m.) |
Indexed | 2 weeks, 4 days ago (Aug. 6, 2025, 9:26 a.m.) |
Issued | 8 years, 3 months ago (May 9, 2017) |
Published | 8 years, 3 months ago (May 9, 2017) |
Published Online | 8 years, 3 months ago (May 9, 2017) |
@article{Lepadatu_2017, title={Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-017-01748-7}, DOI={10.1038/s41598-017-01748-7}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Lepadatu, Serban and Saarikoski, Henri and Beacham, Robert and Benitez, Maria Jose and Moore, Thomas A. and Burnell, Gavin and Sugimoto, Satoshi and Yesudas, Daniel and Wheeler, May C. and Miguel, Jorge and Dhesi, Sarnjeet S. and McGrouther, Damien and McVitie, Stephen and Tatara, Gen and Marrows, Christopher H.}, year={2017}, month=may }