Abstract
AbstractNanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.
Authors
10
- S. R. Hemelaar (first)
- P. de Boer (additional)
- M. Chipaux (additional)
- W. Zuidema (additional)
- T. Hamoh (additional)
- F. Perona Martinez (additional)
- A. Nagl (additional)
- J. P. Hoogenboom (additional)
- B. N. G. Giepmans (additional)
- R. Schirhagl (additional)
References
40
Referenced
81
-
de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Print Share/bookmark. Correlated light and electron microscopy: ultrastructure lights up! Nature Methods
12, 503–513, doi:10.1038/nmeth.3400 (2015).
(
10.1038/nmeth.3400
) / Nature Methods by P de Boer (2015) -
Niitsuma, J., Oikawa, H., Kimura, E., Ushiki, T. & Sekiguchi, T. Cathodoluminescence investigation of organic materials. J. Electron. Microsc. (Tokyo)
54, 325–330, doi:10.1093/jmicro/dfi043 (2005).
(
10.1093/jmicro/dfi043
) / J. Electron. Microsc. (Tokyo) by J Niitsuma (2005) -
Nisman, R., Dellaire, G., Ren, Y., Li, R. & Bazett-Jones, D. P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem.
52, 13–18, doi:10.1177/002215540405200102 (2004).
(
10.1177/002215540405200102
) / J. Histochem. Cytochem. by R Nisman (2004) -
Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z. & Ellisman, M. H. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nature Methods
2, 743–749, doi:10.1038/nmeth791 (2005).
(
10.1038/nmeth791
) / Nature Methods by BN Giepmans (2005) -
Glenn, D. R. et al. Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Scientific Reports
2, 865, doi:10.1038/srep00865 (2012).
(
10.1038/srep00865
) / Scientific Reports by DR Glenn (2012) -
Narváez, A. C. et al. Cathodoluminescence Microscopy of nanostructures on glass substrates. Optics Express
21, 29968–29978, doi:10.1364/OE.21.029968 (2013).
(
10.1364/OE.21.029968
) / Optics Express by AC Narváez (2013) -
Morrison, I. E. G. et al. Multicolour correlative imaging using phosphor probes. Journal of Chemical Biology
8, 169–177, doi:10.1007/s12154-015-0141-5 (2015).
(
10.1007/s12154-015-0141-5
) / Journal of Chemical Biology by IEG Morrison (2015) -
Furukawa, T. et al. High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3nanophosphors. Optics Express
21, 25655–25663, doi:10.1364/OE.21.025655 (2013).
(
10.1364/OE.21.025655
) / Optics Express by T Furukawa (2013) -
Fukushima, S. et al. Y2O3:Tm,Yb Nanophosphors for Correlative Upconversion Luminescence and Cathodoluminescence Imaging. Micron
67, 90–95, doi:10.1016/j.micron.2014.07.002 (2014).
(
10.1016/j.micron.2014.07.002
) / Micron by S Fukushima (2014) -
Fukushima, S. et al. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging. Scientific Reports
6, 25950, doi:10.1038/srep25950 (2016).
(
10.1038/srep25950
) / Scientific Reports by S Fukushima (2016) -
Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annual Reviews of Physical Chemistry
65, 83–105, doi:10.1146/annurev-physchem-040513-103659 (2014).
(
10.1146/annurev-physchem-040513-103659
) / Annual Reviews of Physical Chemistry by R Schirhagl (2014) -
Zhu, Y. et al. The Biocompatibility of Nanodiamonds and Their Application in Drug Delivery Systems. Theranostics
2(3), 302–312, doi:10.7150/thno.3627 (2012).
(
10.7150/thno.3627
) / Theranostics by Y Zhu (2012) -
Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C. & Chang, H. C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Letters
10(9), 3692–3699, doi:10.1021/nl1021909 (2010).
(
10.1021/nl1021909
) / Nano Letters by N Mohan (2010) -
Nagl, A., Hemelaar, S. R. & Schirhagl, R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes-a review. Analytical and Bioanalytical Chemistry
407(25), 7521–7536, doi:10.1007/s00216-015-8849-1 (2015).
(
10.1007/s00216-015-8849-1
) / Analytical and Bioanalytical Chemistry by A Nagl (2015) -
Faklaris, O. et al. Detection of Single Photoluminescent Diamond Nanoparticles in Cells and Study of the Internalization Pathway. Small
4(12), 2236–2239, doi:10.1002/smll.v4:12 (2008).
(
10.1002/smll.200800655
) / Small by O Faklaris (2008) -
McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology
6, 358–363, doi:10.1038/nnano.2011.64 (2011).
(
10.1038/nnano.2011.64
) / Nature Nanotechnology by LP McGuinness (2011) -
Pope, I. et al. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nature Nanotechnology
9, 940–946, doi:10.1038/nnano.2014.210 (2014).
(
10.1038/nnano.2014.210
) / Nature Nanotechnology by I Pope (2014) -
Hemelaar, S. R. et al. The interaction of fluorescent nanodiamond probes with cellular media. Microchim. Acta 184, 1001–1009, doi:10.1007/s00604-017-2086-6 (2017).
(
10.1007/s00604-017-2086-6
) -
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature
455, 648–651, doi:10.1038/nature07278 (2008).
(
10.1038/nature07278
) / Nature by G Balasubramanian (2008) -
van Oort, E. & Glasbeek, M. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem. Phys. Lett.
168, 529–532, doi:10.1016/0009-2614(90)85665-Y (1990).
(
10.1016/0009-2614(90)85665-Y
) / Chem. Phys. Lett. by E van Oort (1990) -
Acosta, V. M. et al. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett.
104, 070801, doi:10.1103/PhysRevLett.104.070801 (2010).
(
10.1103/PhysRevLett.104.070801
) / Phys. Rev. Lett. by VM Acosta (2010) -
Maze, J. R. et al. Wide-range electrical tunability of single-photon emission from chromium-based colour centres in diamond. New J. Phys.
13, 025025 (2011).
(
10.1088/1367-2630/13/2/025025
) / New J. Phys. by JR Maze (2011) -
Zhang, H. et al. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Markers in the Near Infrared. Small
10, 1908–1913, doi:10.1002/smll.201303582 (2014).
(
10.1002/smll.201303582
) / Small by H Zhang (2014) -
Nagarajan, S. et al. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale
8, 11588–11594, doi:10.1039/c6nr01908k (2016).
(
10.1039/C6NR01908K
) / Nanoscale by S Nagarajan (2016) -
Nawa, Y. et al. Multi-Color Imaging of Fluorescent Nanodiamonds in Living HeLa Cells Using Direct Electron-Beam Excitation. Chemphyschem
15, 721–726, doi:10.1002/cphc.201300802 (2014).
(
10.1002/cphc.201300802
) / Chemphyschem by Y Nawa (2014) -
Ong, S. Y., Chipaux, M., Nagl, A. & Schirhagl, R. Shape and crystallographic orientation of Nanodiamond for quantum sensing. Physical Chemistry Chemical Physics, doi:10.1039/C6CP07431F (2017).
(
10.1039/C6CP07431F
) -
De Leij, L., Helfrich, W., Stein, R. & Mattes, M. J. SCLC-cluster-2 Antibodies Detect the Pancarcinoma/Epithelial Glycoprotein EGP-2. International Journal of cancer
8, 60–63, doi:10.1002/(ISSN)1097-0215 (1994).
(
10.1002/ijc.2910570713
) / International Journal of cancer by L De Leij (1994) -
Schnell, U., Kuipers, J. & Giepmans, B. N. EpCAM proteolysis: new fragments with distinct functions? Bioscience Reports
33(2), 321–332, doi:10.1042/BSR20120128 (2013).
(
10.1042/BSR20120128
) / Bioscience Reports by U Schnell (2013) -
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods
9(7), 676–682, doi:10.1038/nmeth.2019 (2012).
(
10.1038/nmeth.2019
) / Nature Methods by J Schindelin (2012) -
Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Applied Physics Letters
104, 033102, doi:10.1126/science.1259464 (2014).
(
10.1063/1.4862749
) / Applied Physics Letters by M Loretz (2014) -
Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Physical Reviews B
86, 081406(R), doi:10.1103/PhysRevB.86.081406 (2012).
(
10.1103/PhysRevB.86.081406
) / Physical Reviews B by BK Ofori-Okai (2012) -
Chipaux, M. et al. Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond. The European Physical Journal D
69, 166, doi:10.1140/epjd/e2015-60080-1 (2015).
(
10.1140/epjd/e2015-60080-1
) / The European Physical Journal D by M Chipaux (2015) -
Lin, H. H. et al. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells With Fluorescent Nanodiamonds. Small
11, 4394–4402, doi:10.1002/smll.v11.34 (2015).
(
10.1002/smll.201500878
) / Small by HH Lin (2015) -
Chu, Z. et al. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Scientific Reports
5, 11661, doi:10.1038/srep11661 (2015).
(
10.1038/srep11661
) / Scientific Reports by Z Chu (2015) -
Peddie, C. J. et al. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy
143(100), 3–14, doi:10.1016/j.ultramic.2014.02.001 (2014).
(
10.1016/j.ultramic.2014.02.001
) / Ultramicroscopy by CJ Peddie (2014) -
Paez-Segala, M. G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nature Methods
12(3), 215–218, doi:10.1038/nmeth.3225 (2015).
(
10.1038/nmeth.3225
) / Nature Methods by MG Paez-Segala (2015) -
Kukulski, W. et al. Precise, correlated fluorescence microscopy and electron tomography of Lowicryl sections using fluorescent fiducial markers. Methods Cell Biol
111, 235–257, doi:10.1016/B978-0-12-416026-2.00013-3 (2012).
(
10.1016/B978-0-12-416026-2.00013-3
) / Methods Cell Biol by W Kukulski (2012) -
Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol.
192, 111–119, doi:10.1083/jcb.201009037 (2011).
(
10.1083/jcb.201009037
) / J. Cell Biol. by W Kukulski (2011) -
Ascarelli, P. et al. Secondary electron emission from diamond: Physical modeling and application to scanning electron microscopy. Journal of Applied Physics
89, 689–696, doi:10.1063/1.1326854 (2001).
(
10.1063/1.1326854
) / Journal of Applied Physics by P Ascarelli (2001) -
Tizei, L. H. & Kociak, M. Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties. Nanotechnology
23(17), 175702, doi:10.1088/0957-4484/23/17/175702 (2012).
(
10.1088/0957-4484/23/17/175702
) / Nanotechnology by LH Tizei (2012)
Dates
Type | When |
---|---|
Created | 8 years, 4 months ago (April 3, 2017, 7:51 a.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 10:35 p.m.) |
Indexed | 1 month, 2 weeks ago (July 1, 2025, 10:15 p.m.) |
Issued | 8 years, 4 months ago (April 7, 2017) |
Published | 8 years, 4 months ago (April 7, 2017) |
Published Online | 8 years, 4 months ago (April 7, 2017) |
@article{Hemelaar_2017, title={Nanodiamonds as multi-purpose labels for microscopy}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-017-00797-2}, DOI={10.1038/s41598-017-00797-2}, number={1}, journal={Scientific Reports}, publisher={Springer Science and Business Media LLC}, author={Hemelaar, S. R. and de Boer, P. and Chipaux, M. and Zuidema, W. and Hamoh, T. and Martinez, F. Perona and Nagl, A. and Hoogenboom, J. P. and Giepmans, B. N. G. and Schirhagl, R.}, year={2017}, month=apr }